Skip to main content

Basic Building Envelope Products Containing PCM and Related Patents

  • Chapter
  • First Online:
PCM-Enhanced Building Components

Part of the book series: Engineering Materials and Processes ((EMP))

  • 1902 Accesses

Abstract

For a variety of climatic conditions, PCM-enhanced building envelope products are widely considered as prospective building technologies which can help in the near future to achieve peak-hour load and HVAC energy consumption reductions. Notable energy savings can be accomplished in residential and commercial buildings, by means of a variety of applications utilizing external envelopes, as well as internal building fabric technologies having capability of sensible and latent heat accumulation. This chapter is mainly focused on most popular building construction products containing PCM. Associated patents are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.marketsandmarkets.com/PressReleases/advanced-phase-change-material-pcm.asp.

  2. 2.

    http://cse.fraunhofer.org/Portals/55819//docs/buildings-xi/kuenzel%20workshop%202.pdf.

  3. 3.

    http://www.sg-weber.de/fassade-wand/produkte/gipsprodukte/webermur-clima-26.html.

  4. 4.

    http://www.maxit-kroelpa.de/.

  5. 5.

    www.csv.pl.

  6. 6.

    http://www.micronal.de/portal/load/fid443847/BASF_Micronal_PCM_Brochure%202009_English.pdf.

  7. 7.

    http://www.thermalcore.info/product-info.htm.

  8. 8.

    http://www.rigips.ch/download/rigips_alba_balance_infobro_de_low.pdf.

  9. 9.

    http://www.rubitherm.de/english/pages/04c_glossary_03.htm.

  10. 10.

    http://www.rubitherm.com/english/pages/02c_latent_heat_fibre_boards.htm.

  11. 11.

    http://www.mgoltd.com/January2009.pdf.

  12. 12.

    http://www.datumphasechange.com/index.php?acoustic-metal-tile2-1.

  13. 13.

    http://www.architectsjournal.co.uk/specification/product-anatomy/-armstrong-ceilings-debuts-energy-saving-coolzone-system-at-ecobuild/8627739.article.

  14. 14.

    http://www.armstrong.com/content2/commclgeu/files/71628.pdf.

  15. 15.

    http://energain.fr/Energain/fr_FR/index.html.

  16. 16.

    http://energain.co.uk/Energain/en_GB/assets/downloads/documentation/references/ref_Lyon_office_building.pdf.

  17. 17.

    http://www.tateinc.com/products/ecocore.aspx.

  18. 18.

    http://tateinc.com/press_ecocore_award.aspx.

  19. 19.

    http://www.ceracasa.com/.

  20. 20.

    http://inhabitat.com/energy-saving-ecom4-tiles-could-shave-16-off-your-power-bill/.

  21. 21.

    http://www.cosella-dorken.com/bvf-ca-en/projects/pcm/northhouse.php.

  22. 22.

    http://www.phasechange.com/index.php/en/.

  23. 23.

    http://www.phasechange.com/index.php/en/about/biopcm-biopcmat-thermastix.

  24. 24.

    http://www.globalplasticsheeting.com/Portals/32796/docs/delta-cool.pdf.

  25. 25.

    http://www.phasechangetechnologies.com/.

  26. 26.

    http://web.ornl.gov/sci/roofs+walls/research/detailed_papers/PCM_enhance/content.html.

  27. 27.

    http://www.glassxpcm.com/.

  28. 28.

    http://greenspec.buildinggreen.com/blogs/high-tech-glazing-phase-change-material.

  29. 29.

    http://www.cosella-dorken.com/bvf-ca-en/projects/pcm/kempen.php.

References

  • Alderman RJ, Yarbrough DW (2007) Use of phase-change materials to enhance the thermal performance of building insulations. In: Proceedings of the international thermal conductivity conference, ITCC29 and ITES17 conference, Birmingham, AL, June 24–27

    Google Scholar 

  • ASTM C1485 (2000) Standard test method for critical radiant flux of exposed attic floor insulation using an electric radiant heat energy source. ASTM International, West Conshohocken, PA http://www.astm.org/DATABASE.CART/HISTORICAL/C1485-00.htm

  • Balcomb JD (1979) Heat storage effectiveness of concrete masonry units. Los Alamos Scientific Laboratory, report No. LA–UR-82-966

    Google Scholar 

  • Banu D, Feldman D, Haghighat F, Paris J, Hawes D (1998) Energy-storing wallboard: flammability tests. J Mater Civ Eng 10(1998):98–105

    Google Scholar 

  • Cabeza LF, Medrano M, Castellón C, Castell A, Solé C, Roca J, Nogués M (2008) Thermal energy storage with phase change materials in building envelopes. Contributions to Science 3(4):501–510

    Google Scholar 

  • Clearwater FL, Khudhair AM, Farid MM (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energ Conv Manage 45:263–275

    Google Scholar 

  • Drake JB (1978) PCMSOL—simulation code for a passive solar structure incorporating phase change materials. U.S. Department of Energy, Oak Ridge National Laboratory. Report ORNL—6359

    Google Scholar 

  • Fitz C, Hofbauer W, Sedlbauer K, Krus M, Breuer K (2006) Prognoseverfahren zum biologischen befall durch algen pilze und flechten an bauteiloberflächen auf basis bauphysikalischer und mikrobieller untersuchungen. Bauforschung für die Praxis Band 77, Fraunhofer IRB Verlag, 304 Seiten, Germany

    Google Scholar 

  • Hawes DW, Banu D, Feldman D (1990) Latent Heat Storage in Concrete. Sol Energ Mater 21, 61–80

    Google Scholar 

  • Hauer A, Mehling H, Schossig P, Yamaha M, Cabeza LF, Martin V, Setterwall F (2005) International energy agency implementing agreement on energy conservation through energy storage. Annex 17 Final Report

    Google Scholar 

  • Khudhair AM, Farid MM (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manage 45:263–275

    Google Scholar 

  • Kośny J, Yarbrough DW, Wilkes KE, Leuthold D, Syed AM (2006) PCM-enhanced cellulose insulation thermal mass in lightweight natural fibers. In: Proceedings of ECOSTOCK—IEA International Conference on Thermal Energy Storage. Stockton College of New Jerse, May 31–June 02, 2006

    Google Scholar 

  • Kośny J, Yarbrough DW, Miller WA, Childs P, Syed AM (2007) Thermal performance of PCM-enhanced building envelope systems. In: Proceedings of X Conference—Thermal Performance of the Exterior Envelopes of Buildings, December 2007

    Google Scholar 

  • Mehling H, Cabeza LF (2008) Heat and cold storage with PCM. Springer, Series: Heat and Mass Transfer, ISBN: 978-3-540-68556-2

    Google Scholar 

  • Salyer IO, Sircar A  (1989) Development of PCM Wallboard for heating and cooling of residential buildings. Thermal Energy Storage Research Activities Review, U.S. Department of Energy, New Orleans, LA, March 15–17, pp 97–123

    Google Scholar 

  • Salyer IO, Sircar AK, Chartoff RP, Miller DE (1985) Advanced phase-change materials for passive solar storage applications. In: Proceedings of the 20th Intersociety Energy Conversion Engineering Conference. Warrendale, Pennsylvania, USA, pp 699–709

    Google Scholar 

  • Shapiro M, Feldman D, Hawes D, Banu D (1987) P.C.M. thermal storage in drywall using organic phase-change material. Passive Sol J 4(4):419–438

    Google Scholar 

  • Stovall TK, Tomlinson JJ (1995) What are the Potential Benefits of Including Latent Storage in Common Wallboard? J Sol Energ Eng Trans ASME 117:318–325

    Google Scholar 

  • Tomlinson JJ, Heberle D (1990) Analysis of wallboard containing a phase change material. In: Proceeding of the 25th Intersociety Energy Conversion Engineering Conference, vol 4, Reno NV, USA

    Google Scholar 

  • Tomlinson J, Jotshi C, Goswami D (1992) Solar thermal energy storage in phase change materials. In: Proceedings of Solar ’92: The American Solar Energy Society Annual Conference, June 15–18, Cocoa Beach, FL, pp 174–79

    Google Scholar 

  • Zalba B, Marín JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23:251–283

    Google Scholar 

  • Zhang M, Medina MA, King J (2005) Development of a thermally enhanced frame wall with phase-change materials for on-peak air conditioning demand reduction and energy savings in residential buildings. Int J Energ Res 29(9):795–809 

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kośny .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kośny, J. (2015). Basic Building Envelope Products Containing PCM and Related Patents. In: PCM-Enhanced Building Components. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-14286-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14286-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14285-2

  • Online ISBN: 978-3-319-14286-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics