Skip to main content

The Adaptations of the Foraminifera and Ostracoda to Fresh Water Colonisation

  • Chapter
  • First Online:

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

Abstract

In marine environments Ostracoda and Foraminifera have been very successful invaders. During the Phanerozoic they colonised the majority of shallow, marginal to deep water, fully marine habitats. Both groups had developed physiological adaptations which pre-adapted them to the invasion of new marine habitats. They adopted a broad range of feeding strategies and reproduction modes. The production of resting stages and brood care may also have contributed to them being efficient invaders. They are also both highly tolerant to variations in salinity. The first invasions of non-marine habitats by ostracods appear to have taken place at the turn of the Devonian and Carboniferous. It is estimated that there had been between 9 and 12 independent invasions of fresh waters by the ostracods. In contrast Foraminifera are typically marine organisms, and only a few species of agglutinated and organic-walled Foraminifera are to be found in brackish and freshwater environments. Agglutinated species build their test using ambient components but are not commonly regarded as calcifying organisms. An impact of salinity on foraminiferal calcification has been observed in several studies. It seems that Foraminifera are incapable of constructing a fully calcified test in low salinity regimes; they use sea water not only as a source of ions to construct shell, but also as a biomineralisation solution. Thus, the success of ostracods in invading freshwater habitats can be attributed to their development of a more effective mechanism of calcification in low mineralisation waters. The core question of this study is to examine possible causes for the differences in success between the two taxa.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aladin NV (1983) Salinity adaptations and osmoregulatory abilities of the Ostracoda from the Caspian and Aral seas and the Brachiopoda and Ostracoda from the Caspian and Aral seas. Zoologichesky Zh 62:51–57

    Google Scholar 

  • Aladin NV (1984) Salinity adaptations and osmoregulation abilities of Ostracoda from Black and Azov seas. Zoologichesky Zh 63:185–190

    Google Scholar 

  • Aladin NV (1993) Salinity tolerance, morphology and physiology of the osmoregulatory organ in Ostracoda with special reference to Ostracoda from the Aral Sea. In: McKenzie KG, Jones PJ (eds) Ostracoda in the earth and life sciences. A.A. Balkema, Rotterdam, pp 387–403

    Google Scholar 

  • Aladin NV, Potts WTW (1996) The osmoregulatory capacity of the Ostracoda. J Comp Physiol B 166:215–222

    Google Scholar 

  • Alve E (1995) Benthic foraminiferal distribution and recolonization of formerly anoxic environments in Drammensfjord, southern Norway. Mar Micropaleontol 25:169–186

    Google Scholar 

  • Alve E (1999) Colonization of new habitats by benthic foraminifera: a review. Earth Sci Rev 46:167–185

    Google Scholar 

  • Angel MV (1990) Food in the deep ocean. In: Whatley R, Maybury C (eds) Ostracoda and global events. Chapman and Hall, London, pp 273–285

    Google Scholar 

  • Angell RW (1980) Test morphogenesis (chamber formation) in the foraminifer Spiroloculina hyalina schulze. J Foramin Res 10:89–101

    Google Scholar 

  • Arnold ZM (1954) Variation and isomorphism in Allogromia laticollaris: a clue to foraminiferal evolution. Contrib Cushman Found Foram Res 5:78–87

    Google Scholar 

  • Arnold ZM (1964) Biological observations on the foraminifer Spiroloculina hyaline schulze. Univ Calif Publ Zool 72:1–93

    Google Scholar 

  • Arnold ZM (1967) Biological observations on the foraminifer Calcituba polymorpha Roboz. Arch Protistenk 110:280–304

    Google Scholar 

  • Bender H, Hemleben C (1988) Constructional aspects in test formation of some agglutinated foraminifera. Abhandlungen der geologischen Bundesanstalt 41:13–21

    Google Scholar 

  • Bennett C (2008) A review of the Carboniferous colonisation of non-marine environments by ostracods. Senckenb Lethaea 88:37–46

    Google Scholar 

  • Bennet CE, Siveter DJ, Davies SJ, Williams M, Wilkinson IP, Browne M, Miller CG (2012) Ostracods from freshwater and brackish environments of the Carboniferous of the Midland Valley of Scotland: the early colonization of terrestrial water bodies. Geol Mag 149:366–396

    Google Scholar 

  • Bennett MB, Heupel MR, Bennett SM, Parker AR (1997) Sheina orri (Myodocopa: Cypridinidae) an ostracod parasitic on gills of the epaulette shark, Hemiscyllium ocellatum (Elasmobranchii: Hemiscyllidae). Int J Parasitol 27:275–281

    Google Scholar 

  • Bentov S, Brownlee C, Erez J (2009) The role of seawater endocytosis in the biomineralization process in calcareous foraminifera. Proc Natl Acad Sci 106:21500–21504

    Google Scholar 

  • Bernhard JM, Casciotti KL, McIlvin MR, Beaudoin DJ, Visscher PT, Edgcomb VP (2012) Potential importance of physiologically diverse benthic foraminifera in sedimentary nitrate storage and respiration. J Geophys Res 117:G03002

    Google Scholar 

  • Berthold WU (1976) Biomineralisation bei milioliden Foraminiferen und die Matritzen-Hypothese. Naturwissenschaften 63:196–197

    Google Scholar 

  • Bless MJM, Pollard JE (1973) Paleoecology and ostracode faunas of Westphalian Ostracode Bands from Limburg, The Netherlands and Lancashire, Great Britain. Meded Rijs Geol Dienst Nieuwe Serie 24:21–53

    Google Scholar 

  • Bless MJM, Streel M, Becker G (1988) Distribution and paleoenvironment of Devonian to Permian ostracode assemblages in Belgium with reference to some Late Famennian to Permian marine nearshore to ‘brackish-water’ assemblages dated by miospores. Ann Soc Géol Belg 110:347–362

    Google Scholar 

  • Böhm F, Eisenhauer A, Tang J, Dietzel M, Krabbenhöft A, Kisakürek B, Horn C (2012) Strontium isotope fractionation of planktic foraminifera and inorganic calcite. Geochim Cosmochim Acta 93:300–314

    Google Scholar 

  • Boudagher-Fadel MK (2008) The Palaeozoic larger benthic foraminifera: the Carboniferous and Permian. In: Boudagher-Fadel MK (ed) Evolution and geological significance of larger benthic foraminifera. Elsevier Science, Amsterdam, pp 39–118

    Google Scholar 

  • Bowser SS, McGee-Rusell SM, Rieder CR (1985) Digestion of prey in foraminifera is not anomalous: a correlation of light microscopic, cytochemical, and HVEM technics to study phagotrophy in two allogromiids. Tissue Cell 17:823–839

    Google Scholar 

  • Bradshaw JS (1955) Preliminary laboratory experiments on ecology of foraminiferal populations. Micropaleontology 1:351–358

    Google Scholar 

  • Butlin RK, Schön I, Griffiths HI (1998a) Introduction to reproductive modes. In: Martens K (ed) Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys Publishers, Leiden, pp 1–24

    Google Scholar 

  • Butlin RK, Schön I, Martens K (1998b) Asexual reproduction in nonmarine ostracods. Heredity 81:473–480

    Google Scholar 

  • Calder JH (1998) The Carboniferous evolution of Nova Scottia. In: Blundell DJ, Scott AC (eds) Lyell: the past is the key to the present, vol 143. Geological Society, London, pp 261–302 Special Publications

    Google Scholar 

  • Cannon HG (1933) On the feeding mechanism of certain marine Ostracoda. Trans Roy Soc Edinb 57:739–764

    Google Scholar 

  • Carbonel P, Colin J-P, Danielopol D, Löffler H, Neustrueva I (1988) Palaeoecology of limnic ostracods: a review on some major topics. Palaeogeogr Palaeoclimatol Palaeoecol 62:413–416

    Google Scholar 

  • Chivas AR, De Deckker P, Shelley JMG (1986) Magnesium content of non-marine ostracod shells: a new palaeosalinometer and palaeothermometer. Palaeogeogr Palaeoclimatol Palaeoecol 54:43–51

    Google Scholar 

  • Cohen AC (1983) Rearing and postembryonic development of the myodocopid ostracode Skogsbergia lerneri from coral reefs of Belize and the Bahamas. J Crustac Biol 3:235–256

    Google Scholar 

  • Cohen AC, Kornicker LS (1987) Catalog of the Rutidermatidae (Crustacea: Ostracoda). Smithson Contrib Zool 449:1–11

    Google Scholar 

  • Conil R, Dreesen R, Lentz M-A, Lys M, Plodowski G (1986) The Devono-Carboniferous transition in the Franco-Belgian basin with reference to foraminifera and brachiopods. Anna Soc Géol Belg 109:19–26

    Google Scholar 

  • Decrouy L, Vennemann TW, Ariztegui D (2011) Controls on ostracod valve geochemistry: part 1. Variations of environmental parameters in ostracod (micro-) habitats. Geochim Cosmochim Acta 75:7364–7379

    Google Scholar 

  • De Deckker P, Chivas AR, Shelley MG (1999) Uptake of Mg and Sr in the euryhaline ostracods Cyprideis determined from in vitro experiments. Palaeogeogr Palaeoclimatol Palaeoecol 148:105–116

    Google Scholar 

  • de Nooijer LJ, Toyofuku T, Oguri K, Nomaki H, Kitazato H (2008) Intracellular pH distribution in foraminifera determined by the fluorescent probe HPTS. Limnol Oceanogr Methods 6:610–618

    Google Scholar 

  • de Nooijer LJ, Toyofuku T, Kitazato H (2009) Foraminifera promote calcification by elevating their intracellular pH. Proc Natl Acad Sci 106:15374–15378

    Google Scholar 

  • du Châtelet EA, Bout-Roumazeilles V, Coccioni R, Frontalini F, Guillot F, Kaminski MA, Recourt P, Riboulleau A, Trentesaux A, Tribovillard N, Ventalon S (2013) Environmental control on shell structure and composition of agglutinated foraminifera along a proximal-distal transect in the Marmara Sea. Mar Geol 335:114–128

    Google Scholar 

  • Dueñas-Bohórquez A, da Rocha RE, Kuroyanagi A, Bijma J, Reichart G-J (2009) Effect of salinity and seawater calcite saturation state on Mg and Sr incorporation in cultured planktonic foraminifera. Mar Micropaleontol 73:178–189

    Google Scholar 

  • Dueñas-Bohórquez A, da Rocha RE, Kuroyanagi A, de Nooijer LJ, Bijma J, Reichart G-J (2011) Interindividual variability and ontogenetic effects on Mg and Sr incorporation in the planktonic foraminifer Globigerinoides sacculifer. Geochim Cosmochim Acta 75:520–532

    Google Scholar 

  • Elderfield H, Bertram CJ, Erez J (1996) A biomineralization model for the incorporation of trace elements into foraminiferal calcium carbonate. Earth Planet Sci Lett 142:409–423

    Google Scholar 

  • Ferguson JE, Henderson GM, Kucera M, Rickaby REM (2008) Systematic change of foraminiferal Mg/Ca ratios across a strong salinity gradient. Earth Planet Sci Lett 265:153–166

    Google Scholar 

  • Forke HC (2002) Biostratigraphic subdivision and correlation of uppermost Carboniferous/lower permian sediments in the southern Alps: Fusulinoidean and Conodont faunas from the Carnic Alps (Austria/Italy), Karavanke Mountains (Slovenia), and southern Urals (Russia). Facies 4:201–276

    Google Scholar 

  • Gallagher SJ (1998) Controls on the distribution of calcareous Foraminifera in the lower Carboniferous of Ireland. Mar Micropaleontol 34:187–211

    Google Scholar 

  • Goldstein ST (1988) On the life cycle of Saccamina alba Hedley, 1962. J Foramin Res 18:311–325

    Google Scholar 

  • Goldstein ST (2003) Foraminifera: a biological overview. In: Sen Gupta BK (ed) Modern Foraminifera. Kluwer Academic Publishers, New York, pp 37–56

    Google Scholar 

  • Gray J (1988) Evolution of the freshwater ecosystem: the fossil record. Palaeogeogr Palaeoclimatol Palaeoecol 62:1–214

    Google Scholar 

  • Grell KG (1973) Protozoology. Springen, Berlin

    Google Scholar 

  • Griffiths HI, Horne DJ (1998) Fossil distribution of reproductive modes in non-marine ostracods. In: Martens K (ed) Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys Publishers, Leiden, pp 101–118

    Google Scholar 

  • Gunter G (1947) Extended remarks on relationships of marine animals to salinity. J Paleontol 21:498–500

    Google Scholar 

  • Hansen HJ (2003) Shell construction in modern calcareous Foraminifera. In: Sen Gupta BK (ed) Modern Foraminifera. Kluwer Academic Publishers, New York, pp 57–70

    Google Scholar 

  • Hartmann G (1975) Arthropoda, crustacea. 2. Buch, IV teil, 4. Lieferung. Bronn’s Kl. Ordn Tierreichs, pp 572–786

    Google Scholar 

  • Harvey THP, Vélez MI, Butterfield NJ (2012) Exceptionally preserved crustaceans from western Canada reveal a cryptic Cambrian radiation. Proc Natl Acad Sci 109:1589–1594

    Google Scholar 

  • Hedberg HD (1934) Some recent and fossil brackish to fresh-water Foraminifera. J Paleontol 8:469–476

    Google Scholar 

  • Holzmann M, Pawlowski J (2002) Freshwater foraminiferans from Lake Geneva: past and present. J Foramin Res 32:344–350

    Google Scholar 

  • Holzmann M, Habura A, Giles H, Bowser SS, Pawlowski J (2003) Freshwater foraminiferans revealed by analysis of environmental DNA samples. J Eukaryot Microbiol 50:135–139

    Google Scholar 

  • Hottinger L (1982) Larger Foraminifera, giant cells with a historical background. Naturwissenschaften 69:361–371

    Google Scholar 

  • Hottinger L (2000) Functional morphology of benthic foraminiferal shells, envelopes of cells beyond measure. Micropaleontology 46:57–86

    Google Scholar 

  • Kalvoda J (2002) Late Devonian-early Carboniferous foraminiferal fauna: zonation, evolutionary events, paleobiogeography, and tectonic implications. Masaryk Univ, Brno, pp 1–213

    Google Scholar 

  • Kaminski MA (2004) The year 2000 classification of the Agglutinated Foraminifera. In: Bubik M, Kaminski MA (eds) Proceedings of the sixth international workshop on Agglutinated Foraminifera. Grzybowski Foundation Special Publication 8, pp 237–255

    Google Scholar 

  • Kaminski MA, Grassle JF, Whitlatch RB (1988) Life history and recolonization among agglutinated foraminifera in the Panama basin. Abh Geol Bundesanst 41:229–243

    Google Scholar 

  • Ke-liang W (1987) On the Devonian-Carboniferous boundary based on foraminiferal fauna from South China. Acta Micropaleontol Sin 2:002

    Google Scholar 

  • Keyser D (1990) Morphological changes and function of the inner lamella layer of podocopid Ostracoda. In: Whatley R, Maybury C (eds) Ostracoda and global events. Chapman and Hall, London, pp 401–410

    Google Scholar 

  • Keyser D, Walter R (2004) Calcification in ostracodes. Rev Esp Micropaleontol 36:1–11

    Google Scholar 

  • Kitazato H, Matsushita S (1996) Laboratory observations of sexual and asexual reproduction of Trochammina hadai Uchio. Trans Proc Paleontol Soc Jpn New Ser 182:454–466

    Google Scholar 

  • Krainer K, Vachard I, Vachard D, d’Ascq V (2002) Late Serpukhovian (Namurian A) microfacies and carbonate microfossils from the Carboniferous of Nötsch (Austria). Facies 46:1–26

    Google Scholar 

  • Krainer K, Davydov V (1998) Facies and biostratigraphy of the Late Carboniferous/Early Permian sedimentary sequence in the Carnic Alps (Austria/Italy). Geoversitas 20:643–662

    Google Scholar 

  • Kuhnt T, Friedrich O, Schmiedl G, Milker Y, Mackensen A, Lückge A (2013) Relationship between pore density in benthic foraminifera and bottom-water oxygen content. Deep Sea Res Part I Oceanogr Res Pap 76:85–95

    Google Scholar 

  • Lea DW (2003) Trace elements in foraminiferal calcite. In: Sen Gupta BK (ed) Modern Foraminifera. Kluwer Academic Publishers, New York, pp 259–277

    Google Scholar 

  • Lee CE, Bell MA (1999) Causes and consequences of recent freshwater invasions by saltwater animals. Tree 14:284–288

    Google Scholar 

  • Lejzerowicz F, Pawlowski J, Fraissinet-Tachet L, Marmeisse R (2010) Molecular evidence for widespread occurrence of Foraminifera in soils. Environ Microbiol 12:2518–2526

    Google Scholar 

  • Leven EJ (2010) Origin of higher fusulinids of the order Neoschwagerinida Minato et Honjo, 1966. Stratigr Geol Correl 18:290–297

    Google Scholar 

  • Leven EJ, Gorgij MN (2011) First record of Gzhelian and Asselian Fusilinids from the Vazhnan formation (Sanandaj-Sirjan zone of Iran). Stratigr Geol Correl 19:486–501

    Google Scholar 

  • Liebau A (2005) A revised classification of the higher taxa of the Ostracoda (Crustacea). Hydrobiologia 538:115–137

    Google Scholar 

  • Lochhead JH (1968) The feeding and swimming of Conchoecia (Crustacea, Ostracoda). Biol Bull 134:456–464

    Google Scholar 

  • Lockwood APM (1962) The osmoregulation of Crustacea. Biol Rev 37:257–305

    Google Scholar 

  • Loeblich AJ, Tappan H (1987) Foraminiferal genera and their classification, vols 1–2. Van Nostrand Reinhold, New York

    Google Scholar 

  • Mamet BL (1975) Carboniferous Foraminifera and algae of the Amsden formation (Mississippian and Pennsylvanian) of wyoming. US Government Printing Office, Washington

    Google Scholar 

  • Mamet BL, Belford D (1968) Carboniferous Foraminifera, Bonaparte Gulf basin, Northwestern Australia. Micropaleontology 14:339–347

    Google Scholar 

  • Martens K (1998) Sex and ostracods: a new synthesis. In: Martens K (ed) Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys Publishers, Leiden, pp 295–321

    Google Scholar 

  • Martens K, Schön I, Meisch C, Horne DJ (2008) Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. Hydrobiologia 595:185–193

    Google Scholar 

  • McIlroy D, Green OR, Brasier MD (2001) Palaeobiology and evolution of the earliest agglutinated Foraminifera: Platysolenites, Spirosolenites and related forms. Lethaia 34:13–29

    Google Scholar 

  • Meisch C (2000) Freshwater Ostracoda of Western and Central Europe. In: Schwörbel J, Zwick P (eds) Süsswasser Fauna von Mitteleuropa 8(3). Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Meisterfeld R, Holzmann M, Pawlowski J (2001) Morphological and molecular characterization of a new terrestrial allogromiid species: Edaphoallogromia australica gen. et spec. nov. (Foraminifera) from Northern Queensland (Australia). Protist 152:185–192

    Google Scholar 

  • Murray JW (1963) Ecological experiments on Foraminiferida. J Mar Biol Assoc U.K. 43:621–642

    Google Scholar 

  • Newell ND (1949) Phyletic size increase, an important trend illustrated by fossil invertebrates. Evolution 3:103–124

    Google Scholar 

  • Okada Y (1982) Ultrastructure and pattern of the carapace of Bicornucythere bisanensis (Ostracoda, Crustacea). Univ Mus Univ Tokyo Bull 20:229–255

    Google Scholar 

  • Pawlowski J (2009) Foraminifera. In: Schaechter M (ed) Encyclopedia of microbiology. Elsevier, Oxford, pp 646–662

    Google Scholar 

  • Pawlowski J, Holzmann M (2002) Molecular phylogeny of Foraminifera—a review. Eur J Protistology 38:1–10

    Google Scholar 

  • Pawlowski J, Holzmann M, Berney C, Fahrni J, Gooday AJ, Cedhagen T, Habura A, Bowser SS (2003) The evolution of early Foraminifera. Proc Natl Acad Sci 100:11494–11498

    Google Scholar 

  • Pawlowski J, Holzmann M, Tyszka J (2013) New supraordinal classification of Foraminifera: molecules meet morphology. Mar Micropaleontol 100:1–10

    Google Scholar 

  • Payne JL, Boyer AG, Brown JH, Finnegan S, Kowalewski M, Krause RA, Lyons SK, McClain CR, McShea DW, Novack-Gottshall PM, Smith FA, Stempien JA, Wang SC (2009) Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proc Natl Acad Sci 106:24–27

    Google Scholar 

  • Payne JL, Groves JR, Jost AB, Nguyen T, Moffitt SE, Hill TM, Skotheim JM (2012) Late Paleozoic Fusulinoidean gigantism driven by atmospheric hyperoxia. Evolution 66–9:2929–2939

    Google Scholar 

  • Perrier V, Vannier J, Siveter DJ (2011) Silurian bolbozoids and cypridinids (Myodocopa) from Europe: pioneer pelagic ostracods. Palaeontology 54:1361–1391

    Google Scholar 

  • Regier JC, Schultz JW, Kambic RE (2005) Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc Roy Soc B Biol Sci 272:395–401

    Google Scholar 

  • Sen Gupta BK (2003) Foraminifera in marginal marine environments. In: Sen Gupta BK (ed) Modern Foraminifera. Kluwer Academic Publishers, New York, pp 141–160

    Google Scholar 

  • Siveter DJ (2008) Ostracods in the Palaeozoic? Senckenb Lethaea 88:1–9

    Google Scholar 

  • Siveter DJ, Briggs DE, Siveter DJ, Sutton MD (2010) An exceptionally preserved myodocopid ostracod from the Silurian of Herefordshire, UK. Proc Roy Soc B Biol Sci 277:1539–1544

    Google Scholar 

  • Siveter DJ, Curry GB (1984) Lower Ordovician (Arenig) ostracods from the highland border complex. In: Curry GB, Bluck BJ, Burton CJ, Ingham JK, Siveter DJ, Williams A (eds) Age, evolution and tectonic history of the highland border complex, Scotland. Trans Roy Soc Edinb Earth Sci 75:113–133

    Google Scholar 

  • Siveter DJ, Vannier JMC, Palmer D (1991) Silurian myodocopes: pioneer pelagic ostracods and the chronology of an ecological shift. J Micropalaeontology 10:151–173

    Google Scholar 

  • Smith RJ (2000) Morphology and ontogeny of Cretaceous ostracods with preserved appendages from Brazil. Palaeontology 43:63–98

    Google Scholar 

  • Sohn IG (1958) Chemical constituents of ostracods; some applications to paleontology and paleoecology. J Paleontol 32:730–736

    Google Scholar 

  • Tappan H, Loeblich AR (1988) Foraminiferal evolution, diversification, and extinction. J Paleontol 62:695–714

    Google Scholar 

  • Thomsen E, Rasmusen TL (2008) Coccolith-agglutinated foraminifera from the early Cretaceous and how they constructed their tests. J Foramin Res 38:193–214

    Google Scholar 

  • Tibert NE, Scott DB (1999) Ostracodes and agglutinated Foraminifera as indicators of paleoenvironmental change in early Carboniferous brackish bay, Atlantic Canada. Palaios 14:246–260

    Google Scholar 

  • Turpen JB, Angell RW (1971) Aspects of molting and calcification in the ostracods Heterocypris. Biol Bull 140:331–338

    Google Scholar 

  • Van der Meeren T, Ito E, Verschuren D, Almendinger JE, Martens K (2011) Valve chemistry of Limnocythere inopinata (Ostracoda) in a cold arid environment—implications for paleolimnological interpretation. Palaeogeogr Palaeoclimatol Palaeoecol 306:116–126

    Google Scholar 

  • Vannier J, Abe K (1992) Recent and early Palaeozoic Myodocope ostracodes: functional morphology, phylogeny, distribution and lifestyles. Palaeontology 35:485–517

    Google Scholar 

  • Vannier J, Abe K (1993) Functional morphology and behaviour of Vargula hilgendorfii (Ostracoda: Myodocopida) from Japan, and discussion of its crustacean ectoparasites: preliminary results from video recordings. J Crustac Biol 13:51–76

    Google Scholar 

  • Vannier J, Abe K, Ikuta K (1998) Feeding in myodocopid ostracods: functional morphology and laboratory observations from videos. Mar Biol 132:391–408

    Google Scholar 

  • Vannier J, Thiéry A, Racheboeuf PR (2003) Spinicaudatans and ostracods (Crustacea) from the Montceau Lagerstätte (Late Carboniferous, France): morphology and palaeoenvironmental significance. Palaeontology 46:999–1030

    Google Scholar 

  • van Raden UJ, Groeneveld J, Raitzsch M, Kucera M (2011) Mg/Ca in the planktonic foraminifera Globorotalia inflate and Globigerinoides bulloides from western Mediterranean plankton tow and core top samples. Mar Micropaleontol 78:101–112

    Google Scholar 

  • Vogel N, Uthicke S (2012) Calcification and photobiology in symbiont-bearing benthic foraminifera and responses to a high CO2 environment. J Exp Mar Biol Ecol 424–425:15–24

    Google Scholar 

  • Weismann A (1887) On the signification of the polar globules. Nature 36:607–609

    Google Scholar 

  • Wightman WG, Scott DB, Medioli FS, Gibling MR (1994) Agglutinated Foraminifera and thecoamoebians from the Late Carboniferous Sydney coalfield, Nova Scotia: paleoecology, paleoenvironments and paleogeographical implications. Palaeogeogr Palaeoclimatol Palaeoecol 106:187–202

    Google Scholar 

  • Williams M, Leng MJ, Stephenson MH, Andrews JE, Wilkinson IP, Siveter DJ, Horne DJ, Vannier JMC (2006) Evidence that early Carboniferous ostracods colonised coastal flood plain brackish water environments. Palaeogeogr Palaeoclimatol Palaeoecol 230:299–318

    Google Scholar 

  • Williams MW, Siveter DJ, Salas MJ, Vannier J, Popov LE, Pour MG (2008) The earliest ostracods: the geological evidence. Senckenb Lethaea 88:11–21

    Google Scholar 

  • Yamada S, Keyser D (2010) Calcification of the marginal infold in podocopid ostracods. Hydrobiologia 638:213–222

    Google Scholar 

  • Yamada S, Tsukagoshi A, Ikeya N (2005) Carapace formation of the podocopid ostracode Semicytherura species (Crustacea: Ostracoda). Lethaia 38:323–332

    Google Scholar 

  • Zeebe RE, Sanyal A (2002) Comparison of two potential strategies of planktonic foraminifera for house building: Mg2+ or H+ removal? Geochim Cosmochim Acta 66:1159–1169

    Google Scholar 

  • Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes: equilibrium, kinetics, isotopes. Elsevier Oceanography Series 65. Elsevier, Amsterdam, pp 1–360

    Google Scholar 

Download references

Acknowledgments

We are very grateful to Prof. Jan Marcin Węsławski, Prof. Marek Zajączkowski (Institute of Oceanology Polish Academy of Sciences, Sopot) and Prof. Geoffrey Boxshall (Natural History Museum, London) for their constructive and helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Iglikowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Iglikowska, A., Pawłowska, J. (2015). The Adaptations of the Foraminifera and Ostracoda to Fresh Water Colonisation. In: Zielinski, T., Weslawski, M., Kuliński, K. (eds) Impact of Climate Changes on Marine Environments. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-14283-8_8

Download citation

Publish with us

Policies and ethics