Submarine Groundwater Discharge to the Bay of Puck, Southern Baltic Sea and Its Possible Changes with Regard to Predicted Climate Changes

  • Beata SzymczychaEmail author
Part of the GeoPlanet: Earth and Planetary Sciences book series (GEPS)


The climate change is an ongoing phenomenon causing numerous environmental problems, including modifications of the already seriously influenced by anthropogenic activity hydrological cycle. Estimating the climate change influence on groundwater is challenging because climate change can modify hydrological processes and groundwater resources directly and indirectly. Under the climate scenarios for the southern Baltic, precipitation is projected to increase in the entire Baltic Sea watershed in winter, while in summer increase of precipitation is mainly projected in the northern part of the basin. Thus, the precipitation will impact the groundwater discharge to the sea (SGD). Consequently, the already substantial SGD to the Bay of Puck, southern Baltic Sea can increase. Not only the additional amount of water will enter the marine environment by means of SGD but also significant load of chemical substances.


Water resources Global change Adaptation 



The study reports the results obtained within research project 2012/05/N/ST10/02761 sponsored by the Polish Ministry of Science and Higher Education and as a part of the Institute of Oceanology Polish Academy of Sciences statutory activities.


  1. Alley WM (2007) Flow and storage in groundwater systems. Science 296:1985–1990CrossRefGoogle Scholar
  2. Agopsowicz T, Pazdro Z (1964) Zasolenie wód kredowych na Niżu Polskim. Zeszyty naukowe Politechniki Gdańskiej 6:151–162Google Scholar
  3. Bates B, Kundzewicz ZW, Wu S, Palutikof JP (2008) Climate change and water. Technical paper VI of the intergovernmental panel on climate change. Intergovernmental Panel on Climate Change Secretariat, Geneva, 210 ppGoogle Scholar
  4. Bouraoui F, Vachaud G, Li LZX, Le Treut H, Chen T (1999) Evaluation of the impact of climate changes on water storage and groundwater recharge at the watershed scale. Clim Dyn 15(2):153–161CrossRefGoogle Scholar
  5. Brouyere S, Carabin G, Dassargues A (2004) Climate change impacts on groundwater resources: modelled deficits in a chalky aquifer, Geer Basin, Belgium. Hydrogeol J 12(2):123–134CrossRefGoogle Scholar
  6. Baltic Sea Environment Proceedings No. 137 (2013) Climate change in the Baltic Sea Area. HELCOM thematic assessment in 2013. Helsinki Commission Baltic Marine Environment Protection CommissionGoogle Scholar
  7. Burnett WC, Aggarwal PK, Aureli A, Bokuniewicz H, Cable JE, Charette MA, Kontar E, Krupa S, Kulkarni KM, Loveless A, Moore WS, Oberdorfer JA, Oliveira J, Ozyurt N, Povinec P, Privitera AMG, Rajar R, Ramessur RT, Scholten J, Stieglitz T, Taniguchi M, Turner JV (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367(2–3):498–543CrossRefGoogle Scholar
  8. Cyberski J, Szefler K (1993) Klimat Zatoki i jej zlewiska: Zatoka Pucka. Edited by Korzeniewski K. Fundacja Rozwoju Uniwersytetu Gdańskiego, Gdańsk, Poland, pp 14–39Google Scholar
  9. Dams J, Woldeamlak ST, Batelaan O (2007) Forecasting land-use change and its impact on the groundwater system of the Kleine Nete catchment, Belgium. Hydrol Earth Syst Sci Discuss (HESS-D) 4(6):4265–4295CrossRefGoogle Scholar
  10. Dettinger MD, Earman S (2007) Western ground water and climate change—pivotal to supply sustainability or vulnerable in its own right? Ground Water 4(1):4–5Google Scholar
  11. Dragoni W, Sukhija BS (2008) Climate change and groundwater: a short review. Geol Soc Lond Spec Publ 288:1–12. doi: 10.1122/SP288.1 CrossRefGoogle Scholar
  12. Falkowska L, Piekarek-Jankowska H (1999) The submarine seepage of the fresh water: disturbance in hydrological chemical structure of the water column in the Gdansk Deep. J Mar Sci 56:153–160Google Scholar
  13. Green TR, Taniguchi M, Kooi H, Gurdak JJ, Allen DM, Hiscock KM, Treidel H, Aureli A (2011) Beneath the surface of global change: impacts of climate change on groundwater. J Hydrol 405:532–560. doi: 10.1016/j.jhydrol.2011.05.002 CrossRefGoogle Scholar
  14. Hsu KC, Wang CH, Chen KC, Chen CT, Ma KW (2007) Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan. Hydrogeol J 15(5):903–913CrossRefGoogle Scholar
  15. IPCC 2007 (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S et al (eds) Cambridge University Press, Cambridge, UK, and New York, USAGoogle Scholar
  16. Keeling CD, Bacastow RB, Bainbridge AE (1976) Atmospheric carbon dioxide variations at Mauna Loa observatory, Hawaii. TELLUS 28(6):538–551CrossRefGoogle Scholar
  17. Keeling CD, Brix H, Gruber N (2004) Seasonal and long-term dynamics of the upper ocean carbon cycle at station ALOHA near Hawaii. Global Biogeochem Cycles 18(4):1–26CrossRefGoogle Scholar
  18. Kløve B, Ala-Aho P, Bertrand G, Gurdak JJ, Kupferberger H, Kværner J, Muotka T, Mykra H, Preda E, Rossi P, Uvo BC, Velasco E, Pulido-Velazquea M (2013) Climate change impacts on groundwater and dependent ecosystems. J Hydrol (in press)Google Scholar
  19. Kolago C (1964) Wody mineralne województwa szczecińskiego i perspektywy ich wykorzystania. Przegląd Zachodniopomorski 5:65–85Google Scholar
  20. Korzeniewski K (1993) Zatoka Pucka. Instytut Oceanologii Uniwersytetu Gdanskiego, GdyniaGoogle Scholar
  21. Kryza J, Kryza H (2006) The analytic and model estimation of the direct groundwater flow to Baltic Sea on the territory of Poland. Geologos 10:154–165Google Scholar
  22. Kundzewicz ZW, Mata LJ, Arnell NW, Doll P, Kabat P, Jimenez B, Miller KA, Oki T, Sen Z, Shiklomanov IA (2007) Freshwater resources and their management. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts adaptation and vulnerability. Cambridge University Press, Cambridge, pp 173–210Google Scholar
  23. Lidzbarski M (2011) Groundwater discharge in the Baltic Sea Basin: geochemistry of Baltic Sea surface and sediments. Edited by Uścinowicz Sz, 2011. Polish Geological Institute-National Research Institute, Warsaw, pp 138–145Google Scholar
  24. Moore WS (2010) The effect of submarine groundwater discharge on the ocean. Annu Rev Mar Sci 2:59–88CrossRefGoogle Scholar
  25. Moustadraf J, Razack M, Sinan M (2008) Evaluation of the impacts of climate changes on the coastal Chaouia aquifer, Morocco, using numerical modeling. Hydrogeol J 16(7):1411–1426CrossRefGoogle Scholar
  26. Nowacki J (1993) Termika, zasolenie i gęstość wody: Zatoka Pucka. In: Korzeniewski K (ed). Fundacja Rozwoju Uniwersytetu Gdańskiego, Gdańsk, Poland, pp 79–112Google Scholar
  27. Pempkowiak J, Szymczycha B, Kotwicki L (2010) Submarine groundwater discharge (SGD) to the Baltic Sea. Rocznik Ochrony Środowiska 12:17–32Google Scholar
  28. Peltonen K (2002) Direct groundwater inflow to the Baltic Sea. TemaNord, Nordic Councils of Ministers, Copenhagen, Holand, 79 ppGoogle Scholar
  29. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(6735):429–436CrossRefGoogle Scholar
  30. Piekarek-Jankowska H (1994) Zatoka Pucka jako obszar drenażu wód podziemnych. Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk, PolandGoogle Scholar
  31. Pietrucień Cz (1983) Regionalne zróżnicowanie warunków dynamicznych i hydrodynamicznych wód podziemnych w stresie brzegowej południowego i wschodniego Bałtyku. Turuń, Poland, p 71Google Scholar
  32. Sahagian DL, Schwartz FW, Jacobs DK (1994) Direct anthropogenic contributions to sea level rise in the twentieth century. Nature 367:54–57CrossRefGoogle Scholar
  33. Schlüter M, Sauter EJ, Andersen CA, Dahlgaard H, Dando PR (2004) Spatial distribution and budget for submarine groundwater discharge in Eckernförde Bay (Western Baltic Sea). Limnol Oceanogr 49:157–167CrossRefGoogle Scholar
  34. Slomp CP, Van Cappellen P (2004) Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295(1–4):64–86CrossRefGoogle Scholar
  35. Szymczycha B, Vogler S, Pempkowiak J (2012) Nutrient fluxes via submarine groundwater discharge to the Bay of Puck, southern Baltic Sea. J Total Environ 438:86–93CrossRefGoogle Scholar
  36. Szymczycha B, Miotk M, Pempkowiak J (2013) Submarine groundwater discharge as a source of mercury in the Bay of Puck, the Southern Baltic Sea. Water Air Soil Pollut 224. doi: 10.1007/s11270-013-1542-0
  37. Szymczycha B, Maciejewska A, Winogradow A, Pempkowiak J (2014) Could the submarine groundwater discharge be a significant carbon source to the southern Baltic Sea? Oceanologia 56:327–347CrossRefGoogle Scholar
  38. Taniguchi M (2000) Evaluation of the saltwater–groundwater interface from borehole temperature in a coastal region. Geophys Res Lett 27(5):713–716CrossRefGoogle Scholar
  39. Taniguchi M, Burnett WC, Ness GD (2008) Integrated research on subsurface environments in Asian urban areas. Sci Total Environ 404(2–3):377–392CrossRefGoogle Scholar
  40. Thoning KW, Tans PP, Komhyr WD (1989) Atmospheric carbon dioxide at Mauna Loa observatory. 2. Analysis of the NOAA GMCC data, 1974–1985. J Geophys Res 94(D6):8549–8565CrossRefGoogle Scholar
  41. Uścinowicz Sz, Miotk-Szpiganowicz G (2011) The Baltic Sea: location, division and catchment area: geochemistry of Baltic Sea surface and sediments. Edited by Uścinowicz Sz, 2011. Polish Geological Institute-National Research Institute, Warsaw, pp 13–17Google Scholar
  42. Voipio A (1981) The Baltic Sea. Elsevier Scientific Publishing Company, Amsterdam, p 148Google Scholar
  43. Viventsowa EA, Voronow AN (2003) Groundwater discharge to the Gulf of Finland (Baltic Sea): ecological aspects. Environ Ecol 45:221–225Google Scholar
  44. Windom HL, Moore WS, Niencheski LFH, Jahnke RA (2006) Submarine groundwater discharge: a large, previously unrecognized source of dissolved iron to the south Atlantic ocean. Mar Chem 102:252–266CrossRefGoogle Scholar
  45. Zektser IS, Loaiciga HA (1993) Groundwater fluxes in the global hydrologic cycle: past, present and future. J Hydrol 144(1–4):405–427CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Oceanology Polish Academy of SciencesSopotPoland

Personalised recommendations