Skip to main content

Submarine Groundwater Discharge to the Bay of Puck, Southern Baltic Sea and Its Possible Changes with Regard to Predicted Climate Changes

  • Chapter
  • First Online:
Impact of Climate Changes on Marine Environments

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

  • 1197 Accesses

Abstract

The climate change is an ongoing phenomenon causing numerous environmental problems, including modifications of the already seriously influenced by anthropogenic activity hydrological cycle. Estimating the climate change influence on groundwater is challenging because climate change can modify hydrological processes and groundwater resources directly and indirectly. Under the climate scenarios for the southern Baltic, precipitation is projected to increase in the entire Baltic Sea watershed in winter, while in summer increase of precipitation is mainly projected in the northern part of the basin. Thus, the precipitation will impact the groundwater discharge to the sea (SGD). Consequently, the already substantial SGD to the Bay of Puck, southern Baltic Sea can increase. Not only the additional amount of water will enter the marine environment by means of SGD but also significant load of chemical substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alley WM (2007) Flow and storage in groundwater systems. Science 296:1985–1990

    Article  Google Scholar 

  • Agopsowicz T, Pazdro Z (1964) Zasolenie wód kredowych na Niżu Polskim. Zeszyty naukowe Politechniki GdaÅ„skiej 6:151–162

    Google Scholar 

  • Bates B, Kundzewicz ZW, Wu S, Palutikof JP (2008) Climate change and water. Technical paper VI of the intergovernmental panel on climate change. Intergovernmental Panel on Climate Change Secretariat, Geneva, 210 pp

    Google Scholar 

  • Bouraoui F, Vachaud G, Li LZX, Le Treut H, Chen T (1999) Evaluation of the impact of climate changes on water storage and groundwater recharge at the watershed scale. Clim Dyn 15(2):153–161

    Article  Google Scholar 

  • Brouyere S, Carabin G, Dassargues A (2004) Climate change impacts on groundwater resources: modelled deficits in a chalky aquifer, Geer Basin, Belgium. Hydrogeol J 12(2):123–134

    Article  Google Scholar 

  • Baltic Sea Environment Proceedings No. 137 (2013) Climate change in the Baltic Sea Area. HELCOM thematic assessment in 2013. Helsinki Commission Baltic Marine Environment Protection Commission

    Google Scholar 

  • Burnett WC, Aggarwal PK, Aureli A, Bokuniewicz H, Cable JE, Charette MA, Kontar E, Krupa S, Kulkarni KM, Loveless A, Moore WS, Oberdorfer JA, Oliveira J, Ozyurt N, Povinec P, Privitera AMG, Rajar R, Ramessur RT, Scholten J, Stieglitz T, Taniguchi M, Turner JV (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367(2–3):498–543

    Article  Google Scholar 

  • Cyberski J, Szefler K (1993) Klimat Zatoki i jej zlewiska: Zatoka Pucka. Edited by Korzeniewski K. Fundacja Rozwoju Uniwersytetu GdaÅ„skiego, GdaÅ„sk, Poland, pp 14–39

    Google Scholar 

  • Dams J, Woldeamlak ST, Batelaan O (2007) Forecasting land-use change and its impact on the groundwater system of the Kleine Nete catchment, Belgium. Hydrol Earth Syst Sci Discuss (HESS-D) 4(6):4265–4295

    Article  Google Scholar 

  • Dettinger MD, Earman S (2007) Western ground water and climate change—pivotal to supply sustainability or vulnerable in its own right? Ground Water 4(1):4–5

    Google Scholar 

  • Dragoni W, Sukhija BS (2008) Climate change and groundwater: a short review. Geol Soc Lond Spec Publ 288:1–12. doi:10.1122/SP288.1

    Article  Google Scholar 

  • Falkowska L, Piekarek-Jankowska H (1999) The submarine seepage of the fresh water: disturbance in hydrological chemical structure of the water column in the Gdansk Deep. J Mar Sci 56:153–160

    Google Scholar 

  • Green TR, Taniguchi M, Kooi H, Gurdak JJ, Allen DM, Hiscock KM, Treidel H, Aureli A (2011) Beneath the surface of global change: impacts of climate change on groundwater. J Hydrol 405:532–560. doi:10.1016/j.jhydrol.2011.05.002

    Article  Google Scholar 

  • Hsu KC, Wang CH, Chen KC, Chen CT, Ma KW (2007) Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan. Hydrogeol J 15(5):903–913

    Article  Google Scholar 

  • IPCC 2007 (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S et al (eds) Cambridge University Press, Cambridge, UK, and New York, USA

    Google Scholar 

  • Keeling CD, Bacastow RB, Bainbridge AE (1976) Atmospheric carbon dioxide variations at Mauna Loa observatory, Hawaii. TELLUS 28(6):538–551

    Article  Google Scholar 

  • Keeling CD, Brix H, Gruber N (2004) Seasonal and long-term dynamics of the upper ocean carbon cycle at station ALOHA near Hawaii. Global Biogeochem Cycles 18(4):1–26

    Article  Google Scholar 

  • Kløve B, Ala-Aho P, Bertrand G, Gurdak JJ, Kupferberger H, Kværner J, Muotka T, Mykra H, Preda E, Rossi P, Uvo BC, Velasco E, Pulido-Velazquea M (2013) Climate change impacts on groundwater and dependent ecosystems. J Hydrol (in press)

    Google Scholar 

  • Kolago C (1964) Wody mineralne województwa szczeciÅ„skiego i perspektywy ich wykorzystania. PrzeglÄ…d Zachodniopomorski 5:65–85

    Google Scholar 

  • Korzeniewski K (1993) Zatoka Pucka. Instytut Oceanologii Uniwersytetu Gdanskiego, Gdynia

    Google Scholar 

  • Kryza J, Kryza H (2006) The analytic and model estimation of the direct groundwater flow to Baltic Sea on the territory of Poland. Geologos 10:154–165

    Google Scholar 

  • Kundzewicz ZW, Mata LJ, Arnell NW, Doll P, Kabat P, Jimenez B, Miller KA, Oki T, Sen Z, Shiklomanov IA (2007) Freshwater resources and their management. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts adaptation and vulnerability. Cambridge University Press, Cambridge, pp 173–210

    Google Scholar 

  • Lidzbarski M (2011) Groundwater discharge in the Baltic Sea Basin: geochemistry of Baltic Sea surface and sediments. Edited by UÅ›cinowicz Sz, 2011. Polish Geological Institute-National Research Institute, Warsaw, pp 138–145

    Google Scholar 

  • Moore WS (2010) The effect of submarine groundwater discharge on the ocean. Annu Rev Mar Sci 2:59–88

    Article  Google Scholar 

  • Moustadraf J, Razack M, Sinan M (2008) Evaluation of the impacts of climate changes on the coastal Chaouia aquifer, Morocco, using numerical modeling. Hydrogeol J 16(7):1411–1426

    Article  Google Scholar 

  • Nowacki J (1993) Termika, zasolenie i gÄ™stość wody: Zatoka Pucka. In: Korzeniewski K (ed). Fundacja Rozwoju Uniwersytetu GdaÅ„skiego, GdaÅ„sk, Poland, pp 79–112

    Google Scholar 

  • Pempkowiak J, Szymczycha B, Kotwicki L (2010) Submarine groundwater discharge (SGD) to the Baltic Sea. Rocznik Ochrony Åšrodowiska 12:17–32

    Google Scholar 

  • Peltonen K (2002) Direct groundwater inflow to the Baltic Sea. TemaNord, Nordic Councils of Ministers, Copenhagen, Holand, 79 pp

    Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(6735):429–436

    Article  Google Scholar 

  • Piekarek-Jankowska H (1994) Zatoka Pucka jako obszar drenażu wód podziemnych. Wydawnictwo Uniwersytetu GdaÅ„skiego, GdaÅ„sk, Poland

    Google Scholar 

  • PietrucieÅ„ Cz (1983) Regionalne zróżnicowanie warunków dynamicznych i hydrodynamicznych wód podziemnych w stresie brzegowej poÅ‚udniowego i wschodniego BaÅ‚tyku. TuruÅ„, Poland, p 71

    Google Scholar 

  • Sahagian DL, Schwartz FW, Jacobs DK (1994) Direct anthropogenic contributions to sea level rise in the twentieth century. Nature 367:54–57

    Article  Google Scholar 

  • Schlüter M, Sauter EJ, Andersen CA, Dahlgaard H, Dando PR (2004) Spatial distribution and budget for submarine groundwater discharge in Eckernförde Bay (Western Baltic Sea). Limnol Oceanogr 49:157–167

    Article  Google Scholar 

  • Slomp CP, Van Cappellen P (2004) Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295(1–4):64–86

    Article  Google Scholar 

  • Szymczycha B, Vogler S, Pempkowiak J (2012) Nutrient fluxes via submarine groundwater discharge to the Bay of Puck, southern Baltic Sea. J Total Environ 438:86–93

    Article  Google Scholar 

  • Szymczycha B, Miotk M, Pempkowiak J (2013) Submarine groundwater discharge as a source of mercury in the Bay of Puck, the Southern Baltic Sea. Water Air Soil Pollut 224. doi:10.1007/s11270-013-1542-0

  • Szymczycha B, Maciejewska A, Winogradow A, Pempkowiak J (2014) Could the submarine groundwater discharge be a significant carbon source to the southern Baltic Sea? Oceanologia 56:327–347

    Article  Google Scholar 

  • Taniguchi M (2000) Evaluation of the saltwater–groundwater interface from borehole temperature in a coastal region. Geophys Res Lett 27(5):713–716

    Article  Google Scholar 

  • Taniguchi M, Burnett WC, Ness GD (2008) Integrated research on subsurface environments in Asian urban areas. Sci Total Environ 404(2–3):377–392

    Article  Google Scholar 

  • Thoning KW, Tans PP, Komhyr WD (1989) Atmospheric carbon dioxide at Mauna Loa observatory. 2. Analysis of the NOAA GMCC data, 1974–1985. J Geophys Res 94(D6):8549–8565

    Article  Google Scholar 

  • UÅ›cinowicz Sz, Miotk-Szpiganowicz G (2011) The Baltic Sea: location, division and catchment area: geochemistry of Baltic Sea surface and sediments. Edited by UÅ›cinowicz Sz, 2011. Polish Geological Institute-National Research Institute, Warsaw, pp 13–17

    Google Scholar 

  • Voipio A (1981) The Baltic Sea. Elsevier Scientific Publishing Company, Amsterdam, p 148

    Google Scholar 

  • Viventsowa EA, Voronow AN (2003) Groundwater discharge to the Gulf of Finland (Baltic Sea): ecological aspects. Environ Ecol 45:221–225

    Google Scholar 

  • Windom HL, Moore WS, Niencheski LFH, Jahnke RA (2006) Submarine groundwater discharge: a large, previously unrecognized source of dissolved iron to the south Atlantic ocean. Mar Chem 102:252–266

    Article  Google Scholar 

  • Zektser IS, Loaiciga HA (1993) Groundwater fluxes in the global hydrologic cycle: past, present and future. J Hydrol 144(1–4):405–427

    Article  Google Scholar 

Download references

Acknowledgments

The study reports the results obtained within research project 2012/05/N/ST10/02761 sponsored by the Polish Ministry of Science and Higher Education and as a part of the Institute of Oceanology Polish Academy of Sciences statutory activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Szymczycha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Szymczycha, B. (2015). Submarine Groundwater Discharge to the Bay of Puck, Southern Baltic Sea and Its Possible Changes with Regard to Predicted Climate Changes. In: Zielinski, T., Weslawski, M., Kuliński, K. (eds) Impact of Climate Changes on Marine Environments. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-14283-8_6

Download citation

Publish with us

Policies and ethics