Building a Multimodal Urban Network Model Using OpenStreetMap Data for the Analysis of Sustainable Accessibility

Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


This chapter presents the process of building a multimodal urban network model using Volunteered Geographic Information (VGI) and in particular OpenStreetMap (OSM). The spatial data model design adopts a level of simplification that is adequate to OSM data availability and quality, and suitable to the measurement of the sustainable accessibility of urban neighborhoods and city-regions. The urban network model connects a private transport system (i.e. pedestrian, bicycle, car), a public transport system (i.e. rail, metro, tram and bus) and a land use system (i.e. building land use units). Various algorithmic procedures have been developed to produce the network model, supporting the reproducibility of the process and addressing the challenges of using OSM data for this purpose. While OSM demonstrates great potential for urban analysis, thanks to the detail of its attributes and its open and universal coverage, there is still some way to go to provide the data quality and consistency required for detailed operational urban models.


Multimodal networks Street networks Network model Spatial network analysis Sustainable accessibility 



This research was generously funded by the Fundação para a Ciência e Tecnologia (FCT)—Portuguese Science and Technology Foundation—with grant SFRH/BD/46709/2008.


  1. Ayed H, Galvez-Fernandez C, Habbas Z, Khadraoui D (2011) Solving time-dependent multimodal transport problems using a transfer graph model. Comput Ind Eng 61:391–401. doi: 10.1016/j.cie.2010.05.018 CrossRefGoogle Scholar
  2. Ballester MG, Pérez MR, Stuiver J (2011) Automatic pedestrian network generation. pp 1–13Google Scholar
  3. Bertolini L, le Clercq F, Kapoen L (2005) Sustainable accessibility: a conceptual framework to integrate transport and land use plan-making. Two test-applications in the Netherlands and a reflection on the way forward. Transp Policy 12:207–220. doi: 10.1016/j.tranpol.2005.01.006 CrossRefGoogle Scholar
  4. Bielli M, Boulmakoul A, Mouncif H (2006) Object modeling and path computation for multimodal travel systems. Eur J Oper Res 175:1705–1730. doi: 10.1016/j.ejor.2005.02.036 CrossRefGoogle Scholar
  5. Butler JA, Dueker KJ (2001) Implementing the enterprise GIS in transportation database design. J Urban Reg Inf Syst Assoc 13:17Google Scholar
  6. Chen S, Tan J, Claramunt C, Ray C (2011) Multi-scale and multi-modal GIS-T data model. J Transp Geogr 19:147–161. doi: 10.1016/j.jtrangeo.2009.09.006 CrossRefGoogle Scholar
  7. Chin GKW, Van Niel KP, Giles-Corti B, Knuiman M (2008) Accessibility and connectivity in physical activity studies: The impact of missing pedestrian data. Prev Med 46:41–45. doi: 10.1016/j.ypmed.2007.08.004 CrossRefGoogle Scholar
  8. Estima J, Painho M (2013) Exploratory analysis of OpenStreetMap for land use classification. In: Proceedings of the second ACM SIGSPATIAL international workshop on crowdsourced and volunteered geographic information, pp. 39–46. ACM, New York. doi: 10.1145/2534732.2534734
  9. Fonseca FT, Egenhofer MJ, Davis CA, Borges KAV (2000) Ontologies and knowledge sharing in urban GIS. Comput Environ Urban Syst 24:251–272. doi: 10.1016/S0198-9715(00)00004-1 CrossRefGoogle Scholar
  10. Friedrich M (1998) A multi-modal transport model for integrated planning. In: World conference on transport research society, pp 1–14. AntwerpenGoogle Scholar
  11. Galvez-Fernandez C, Khadraoui D, Ayed H et al (2009) Distributed approach for solving time-dependent problems in multimodal transport networks. Adv Oper Res 2009:e512613. doi: 10.1155/2009/512613 Google Scholar
  12. Gil J (2014) Analyzing the configuration of multi-modal urban networks. Geogr Anal 46:368–391. doi: 10.1111/gean.12062 Google Scholar
  13. Gil J, Read S (2012) Measuring sustainable accessibility potential using the mobility infrastructure’s network configuration. In: Proceedings: 8th international space syntax symposium, pp 8104:1–8104:19. Pontificia Universidad Catolica de Chile, SantiagoGoogle Scholar
  14. Gil J, Read S (2014) Patterns of sustainable mobility and the structure of modality in the Randstad city-region. A|Z ITU J Fac Architect 11Google Scholar
  15. Girres J-F, Touya G (2010) Quality assessment of the French OpenStreetMap dataset. Trans GIS 14:435–459. doi: 10.1111/j.1467-9671.2010.01203.x CrossRefGoogle Scholar
  16. Goodchild MF (2000) GIS and transportation: status and challenges. GeoInformatica 4:127–139–139Google Scholar
  17. Goodchild MF, Li L (2012) Assuring the quality of volunteered geographic information. Spat Stat 1:110–120. doi: 10.1016/j.spasta.2012.03.002 CrossRefGoogle Scholar
  18. Graser A, Straub M, Dragaschnig M (2014) Towards an open source analysis toolbox for street network comparison: indicators, tools and results of a comparison of OSM and the official Austrian reference graph. Trans GIS 18:510–526. doi: 10.1111/tgis.12061 CrossRefGoogle Scholar
  19. Hadas Y (2013) Assessing public transport systems connectivity based on Google Transit data. J Transp Geogr 33:105–116. doi: 10.1016/j.jtrangeo.2013.09.015 CrossRefGoogle Scholar
  20. Haklay M (2010) How good is volunteered geographical information? A comparative study of OpenStreetMap and Ordnance Survey datasets. Environ Plan 37:682–703. doi: 10.1068/b35097 CrossRefGoogle Scholar
  21. Haklay M, Weber P (2008) OpenStreetMap: user-generated street maps. IEEE Pervasive Comput 7:12–18. doi: 10.1109/MPRV.2008.80 CrossRefGoogle Scholar
  22. Ismail MA, Said MN (2014) Integration of geospatial multi-mode transportation systems in Kuala Lumpur. IOP Conf Ser: Earth Environ Sci 20:012–027. doi: 10.1088/1755-1315/20/1/012027 Google Scholar
  23. Jiang B (2011) A Short Note on Data-Intensive Geospatial Computing. In: Popovich VV, Claramunt C, Devogele T et al (eds) Information fusion and geographic information systems. Springer, Berlin, pp 13–17CrossRefGoogle Scholar
  24. Jiang B (2013) Volunteered geographic information and computational geography: new perspectives. In: Sui D, Elwood S, Goodchild M (eds) Crowdsourcing geographic knowledge. Springer, Netherlands, pp 125–138CrossRefGoogle Scholar
  25. Jokar Arsanjani J, Vaz E (2015) An assessment of a collaborative mapping approach for exploring land use patterns for several European metropolises. Int J Appl Earth Obs Geoinf (in press)Google Scholar
  26. Jokar Arsanjani J, Barron C, Bakillah M, Helbich M (2013a) Assessing the quality of OpenStreetMap contributors together with their contributions. In: 16th AGILE international conference on geographic information science, Leuven, Belgium. 14–17 May 2013Google Scholar
  27. Jokar Arsanjani J, Helbich M, Bakillah M et al. (2013b) Toward mapping land-use patterns from volunteered geographic information. Int J Geogr Inf Sci 27:2264–2278. doi: 10.1080/13658816.2013.800871
  28. Karimi HA, Kasemsuppakorn P (2012) Pedestrian network map generation approaches and recommendation. Int J Geogr Inf Sci 27:947–962. doi: 10.1080/13658816.2012.730148
  29. Kim J, yong Park S, Bang Y, Yu K (2009) Automatic derivation of a pedestrian network based on existing spatial data setsGoogle Scholar
  30. Le Clercq F, Bertolini L (2003) Achieving sustainable accessibility: an evaluation of policy measures in the Amsterdam area. Built Environ 29:36–47. doi: 10.2148/benv. CrossRefGoogle Scholar
  31. Li Z-C, Huang H-J, Lam WHK, Wong SC (2007) A Model for evaluation of transport policies in multimodal networks with road and parking capacity constraints. J Math Model Algor 6:239–257. doi: 10.1007/s10852-006-9040-7 CrossRefGoogle Scholar
  32. Liu L (2011) Data model and algorithms for multimodal route planning with transportation networks. Technische Universität München, PhDGoogle Scholar
  33. Lozano A, Storchi G (2001) Shortest viable path algorithm in multimodal networks. Transp Res Part A Policy Pract 35:225–241. doi: 10.1016/S0965-8564(99)00056-7 CrossRefGoogle Scholar
  34. Mavoa S, Witten K, McCreanor T, O’Sullivan D (2012) GIS based destination accessibility via public transit and walking in Auckland, New Zealand. J Transp Geogr 20:15–22. doi: 10.1016/j.jtrangeo.2011.10.001 CrossRefGoogle Scholar
  35. Miller HJ, Shaw S-L (2001) Geographic information systems for transportation: principles and applications. Oxford University Press, OxfordGoogle Scholar
  36. Mooney P, Corcoran P, Winstanley AC (2010) Towards Quality Metrics for OpenStreetMap. Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems, pp 514–517. ACM, New YorkGoogle Scholar
  37. Mouncif H, Boulmakoul A, Chala M (2006) Integrating GIS-Technology for Modelling Origin-Destination Trip in Multimodal Transportation Networks. Int Arab J Inf Technol 3:256–264Google Scholar
  38. Neis P, Zielstra D (2014) Generation of a tailored routing network for disabled people based on collaboratively collected geodata. Appl Geogr 47:70–77. doi: 10.1016/j.apgeog.2013.12.004 CrossRefGoogle Scholar
  39. Neis P, Zielstra D, Zipf A (2011) The street network evolution of crowdsourced maps: OpenStreetMap in Germany 2007–2011. Future Internet 4:1–21. doi: 10.3390/fi4010001 CrossRefGoogle Scholar
  40. Scheider S, Kuhn W (2010) Affordance-based categorization of road network data using a grounded theory of channel networks. Int J Geogr Inf Sci 24:1249–1267. doi: 10.1080/13658810903514198 CrossRefGoogle Scholar
  41. Scheurer J, Curtis C (2008) Spatial network analysis of multimodal transport systems: developing a strategic planning tool to assess the congruence of movement and urban structure. Curtin University of Technology, PerthGoogle Scholar
  42. Scioscia F, Binetti M, Ruta M et al (2014) A framework and a tool for semantic annotation of POIs in OpenStreetMap. Procedia—Soc Behav Sci 111:1092–1101. doi: 10.1016/j.sbspro.2014.01.144 CrossRefGoogle Scholar
  43. Sester M, Jokar Arsanjani J, Klammer R et al. (2014) Integrating and generalising volunteered geographic information. In: Burghardt D, Duchêne C, Mackaness W (eds) Abstracting geographic information in a data rich world. Springer International Publishing, New York, pp 119–155Google Scholar
  44. Stead D, Marshall S (2001) The relationships between urban form and travel patterns. Int Rev Evaluat EJTIR 1:113–141Google Scholar
  45. Van Nes R (2002) Design of multimodal transport networks. PhD, Civil Engineering, Delft Technical UniversityGoogle Scholar
  46. Van Wee B (2002) Land use and transport: research and policy challenges. J Transp Geogr 10:259–271. doi: 10.1016/S0966-6923(02)00041-8 CrossRefGoogle Scholar
  47. Yigitcanlar T, Sipe N, Evans R, Pitot M (2007) A GIS-based land use and public transport accessibility indexing model. Aust Plan 44:30–37. doi: 10.1080/07293682.2007.9982586 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Architecture, Department of UrbanismDelft University of TechnologyDelftThe Netherlands

Personalised recommendations