Human Activity Dataset Generation
Chapter
First Online:
- 1 Citations
- 1.1k Downloads
Abstract
This chapter presents the collection of stages required for the acquisition of the experimental HAR data used in this thesis. It includes aspects such as smart phone selection, trials with volunteers, signal conditioning and feature selection. It also describes the procedures concerning the dataset validation; internally through experimentation and externally via a HAR contest in which other research groups were encouraged to propose novel solutions to the recognition problem.
Keywords
Inertial Sensor Window Sample Learn Vector Quantization Human Activity Recognition Body Acceleration
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- C.B. Abdelkader, R. Cutler, L. Davis, in Stride and Cadence as a Biometric in Automatic Person Identification and Verification, International Conference on Automatic Face and Gesture Recognition, 2002Google Scholar
- Android (2013) Android developers. http://developer.android.com/index.html. Accessed 05 Nov 2013
- M. Aupetit, Nearly homogeneous multi-partitioning with a deterministic generator. Neuro Comput 72, 1379–1389 (2009)Google Scholar
- K. Bache, M. Lichman, UCI machine learning repository (2013) http://archive.ics.uci.edu/ml
- L. Bao, S.S. Intille, Activity recognition from user-annotated acceleration data. Pervasive. Comput. (2004)Google Scholar
- B. Bruno, F. Mastrogiovanni, A. Sgorbissa, T. Vernazza, R. Zaccaria. in Human Motion Modelling and Recognition: A Computational Approach, IEEE International Conference on Automation Science and Engineering, 2012Google Scholar
- C.C. Chang, C.J. Lin, LIBSVM: A Libraries for support vector machine. ACM Trans. Intell. Syst. Technol. 2, 27–54 (2011)CrossRefGoogle Scholar
- S. Dernbach, B. Das, N.C. Krishnan, B.L. Thomas, D.J. Cook, in Simple and Complex Activity Recognition Through Smart Phones, International Conference on Intelligent Environments, 2012Google Scholar
- P. Duhamel, M. Vetterli, Fast fourier transforms: a tutorial review and a state of the art. Sig. proce. 19, 259–299 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
- A. Gupta, C. Milanesi, R. Cozza, C.K. Lu, Market share analysis: mobile phones, worldwide, 2q13. Technical report, Gartner Inc. (2013)Google Scholar
- M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The weka data mining software: an update. ACM SIGKDD Explor. Newslett. 11, 10–18 (2009)Google Scholar
- J.J.C. Ho. Interruptions: using activity transitions to trigger proactive messages. Ph.D. thesis, Massachusetts Institute of Technology, 2004Google Scholar
- M.D. Karantonis, M.R. Narayanan, M. Mathie, N.H. Lovell, B.G. Celler, Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Inf. Technol. Biomed. 10, 156–167 (2006)CrossRefGoogle Scholar
- M. Kästner, M. Strickert, T. Villmann, in A Sparse Kernelized Matrix Learning Vector Quantization Model for Human Activity Recognition, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2013Google Scholar
- A.M. Khan, Y.K Lee, S.Y Lee, T.S Kim, in Human Activity Recognition via an Accelerometer-Enabled-Smartphone Using Kernel Discriminant Analysis, IEEE International Conference on Future Information Technology, 2010Google Scholar
- K.V. Laerhoven, O. Cakmakci, in What Shall We Teach Our Pants International Symposium on Wearable Computers, 2000Google Scholar
- A. Reiss, G. Hendeby, D. Stricker, inA Competitive Approach for Human Activity Recognition on Smartphones, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2013Google Scholar
- J.L. Reyes-Ortiz, D. Anguita, A. Ghio, L. Oneto, X. Parra. Human activity recognition using smartphones data set (2013), http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
- J.L. Reyes-Ortiz, D. Anguita, A. Ghio, L. Oneto, X. Parra. Recognition of basic activities and postural transitions using smartphones data set (2014), http://www.har.smartlab.ws
- D. Rodríguez-Martín. Sistema inercial vestible amb capacitat de desenvolupament implementació algorísmica. Master’s thesis, Universitat Politècnica de Catalunya, 2010Google Scholar
- D. Rodríguez-Martín, C. Pérez-López, A. Samà, J. Cabestany, A. Català, A wearable inertial measurement unit for long-term monitoring in the dependency care area. Sens 13, 14079–14104, (2013a)Google Scholar
- D. Rodríguez-Martín, A. Samà, C. Perez-Lopez, A. Català, J. Cabestany, A. Rodriguez-Molinero, Svm-based posture identification with a single waist-located triaxial accelerometer. Expert. Syst. Appl. 40, 7203–7211 (2013b)Google Scholar
- D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Förster, G. Tröster, P. Lukowicz, D. Bannach, G. Pirkl, A. Ferscha, in Collecting Complex Activity Data Sets in Highly Rich Networked Sensor Environments, International Conference on Networked Sensing Systems, 2010Google Scholar
- B. Romera-Paredes, H. Aung, N. Bianchi-Berthouze, inA One-vs-One Classifier Ensemble With Majority Voting for Activity Recognition, European Symposium Artificial Neural Networks, Computational Intelligence Machine Learn, 2013Google Scholar
- K. Roth, I. Kauppinen, P.A.A. Esquef, V. Valimaki, in Frequency Warped Burg’s Method For Ar-Modeling, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2003Google Scholar
- A. Samà, Human movement analysis by means of accelerometers: application to human gait and motor symptoms of Parkinsons disease. Ph.D. thesis, Universitat Politécnica de Catalunya (2013)Google Scholar
- A. Samà, C. Angulo, D. Pardo, A. Català, J. Cabestany, Analyzing human gait and posture by combining feature selection and kernel methods. Neuro Comput 74, 2665–2674 (2011)Google Scholar
- E. Tapia, S. Intille, L. Lopez, K. Larson, in The Design of A Portable Kit of Wireless Sensors for Naturalistic Data Collection, Pervasive Computing, 2006Google Scholar
- J. Wang, Q. Chen, Y. Chen, in Rbf Kernel Based Support Vector Machine With Universal Approximation and its Application, Advances in Neural Networks—ISNN, 2004Google Scholar
- J.Y. Yang, J.S. Wang, Y.P. Chen, Using acceleration measurements for activity recognition: an effective learning algorithm for constructing neural classifiers. Pattern Recogn. Lett. 29, 2213–2220 (2008)CrossRefGoogle Scholar
Copyright information
© Springer International Publishing Switzerland 2015