Advertisement

Background

  • Jorge Luis Reyes OrtizEmail author
Chapter
  • 1.1k Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter describes the main ideas about the areas of study relevant to the development of HAR systems in order to develop a global perspective of our research problem. These areas are divided in two groups: regarding our framework context (Ambient Intelli-gence (AmI), Ambient Assisted Living (AAL)) and implementation mechanisms (sensors, smartphones and ML with emphasis on svms).

Keywords

Mobile Phone Short Message Service Wearable Sensor Binary Classification Problem Ambient Assist Live 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. E. Aarts, R. Wichert, in Ambient Intelligence. Technology Guide, 2009Google Scholar
  2. G.D. Abowd, E.D. Mynatt, Charting past, present, and future research in ubiquitous computing. ACM Trans. Comput. Hum. Interact. 7, 29–58 (2000)Google Scholar
  3. A. Aizerman, E.M. Braverman, L.I. Rozoner, Theoretical foundations of the potential function method in pattern recognition learning. Autom. Remote Control 25, 821–837 (1964)Google Scholar
  4. N.S. Altman, An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46, 175–185 (1992)Google Scholar
  5. D. Anguita, A. Ghio, L. Oneto, X. Parra, J.-L. Reyes-Ortiz, in Training Computationally Efficient Smartphone-Based Human Activity Recognition Models. International Conference on Artificial Neural Networks, 2013Google Scholar
  6. X. Bian, G.D Abowd, J.M Rehg, Using sound source localization in a home environment. in Pervasive Computing (2005)Google Scholar
  7. C.M. Bishop. Pattern Recognition and Machine Learning (Springer, Heidelberg, 2006)Google Scholar
  8. B.E. Boser, I.M. Guyon, V.N. Vapnik, in A Training Algorithm for Optimal Margin Classifiers. Annual workshop on Computational learning theory (1992)Google Scholar
  9. L. Breiman, Random forests. Mach. learn. 45, 5–32 (2001)Google Scholar
  10. T. Brezmes, J.L. Gorricho, J. Cotrina, in Activity Recognition from Accelerometer Data on a Mobile Phone Soft Computing, and Ambient Assisted Living. Distributed Computing, Artificial Intelligence, Bioinformatics, 2009Google Scholar
  11. A. Bulling, U. Blanke, B. Schiele, A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv. 46, 33 (2014)Google Scholar
  12. A. Campbell, T. Choudhury, From smart to cognitive phones. IEEE Pervasive Comput. 11, 7–11 (2012)CrossRefGoogle Scholar
  13. O. Chapelle, B. Schölkopf, A. Zien et al., Semi-Supervised Learning (MIT press, Cambridge, 2006)Google Scholar
  14. L. Chen, J. Hoey, C.D. Nugent, D.J. Cook, Z. Yu, Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. B Cybern. Part C Appl. Rev. 42, 790–808 (2012)Google Scholar
  15. B. Coley, B. Najafi, A. Paraschiv-Ionescu, K. Aminian, Stair climbing detection during daily physical activity using a miniature gyroscope. Gait Posture 22, 287–294 (2005)Google Scholar
  16. D.J. Cook, S.K. Das, Pervasive computing at scale: transforming the state of the art. Pervasive Mob. Comput. 8, 22–35 (2012)Google Scholar
  17. C. Cortes, V. Vapnik, Support-vector networks. Mach. learn. 20, 273–297 (1995)Google Scholar
  18. N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods (Cambridge University Press, Cambridg, 2000)Google Scholar
  19. L.C. De Silva, C. Morikawa, I.M. Petra, State of the art of smart homes. Eng. Appl. Artif. Intell. 25, 1313–1321 (2012)Google Scholar
  20. Department of Economic United Nations and Social Affairs, World Population Prospects: The 2012 Revision: Volume I: Comprehensive Tables (United Nations Publications, New York, 2013)Google Scholar
  21. K. Doya, Reinforcement learning in continuous time and space. Neural Comput. 12, 219–245 (2000)CrossRefGoogle Scholar
  22. H. Drucker, C.J.C. Burges, L. Kaufman, A. Smola, V. Vapnik, Support vector regression machines. Adv. Neural Inf. Process. Syst. 9, 155–161 (1997)Google Scholar
  23. J. Ekholm, S. Fabre, in Forecast: Mobile Data Traffic and Revenue, Worldwide, 2010–2015. Gartner Mobile Communications Worldwide, 2011Google Scholar
  24. Eur, The 2012 ageing report: underlying assumptions and projection methodologies European Commission, Directorate-General for Economic and Financial Affairs (2011)Google Scholar
  25. R. Fergus, Y. Weiss,A. Torralba, in Semi-Supervised Learning in Gigantic Image Collections. Neural Information Processing Systems, 2009Google Scholar
  26. V. Franc, A. Zien, B. Schölkopf, in Support Vector Machines as Probabilistic Models. International Conference on Machine Learning, 2011Google Scholar
  27. J.P. García-Vázquez, M.D. Rodríguez, M.E. Tentori, D. Saldana, Á.G. Andrade, A.N. Espinoza, An agent-based architecture for developing activity-aware systems for assisting elderly. J. Univ. Comput. Sci. 16, 1500–1520 (2010)Google Scholar
  28. J. George, K. Vunckx, S. Tejpar, C.M. Deroose, J. Nuyts, D. Loeckx, P. Suetens, in Fuzzy Statistical Unsupervised Learning Based Total Lesion Metabolic Activity Estimation in Positron Emission Tomography Images. Machine Learning in Medical Imaging, 2011Google Scholar
  29. J. Honeycutt, Introducing Windows 8: An Overview for IT Professionals (Microsoft Press, 2012)Google Scholar
  30. C.-W. Hsu, C.-J. Lin, A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Networks. 13, 415–425 (2002)Google Scholar
  31. V. Issarny, D. Sacchetti, F. Tartanoglu, F. Sailhan, R. Chibout, N. Levy, A. Talamona, Developing ambient intelligence systems: a solution based on web services. Autom. Software Eng. 12, 101–137 (2005)Google Scholar
  32. R. José, H. Rodrigues, N. Otero, Ambient intelligence: beyond the inspiring vision. J. Univ. Comput. Sci. 16, 1480–1499 (2010)Google Scholar
  33. W. Karush, Minima of functions of several variables with inequalities as side constraints. Master’s thesis, Department of Mathematics, University of Chicago (1939)Google Scholar
  34. S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, K.R.K. Murthy, Improvements to platt’s smo algorithm for svm classifier design. Neural Comput. 13, 637–649 (2001)CrossRefzbMATHGoogle Scholar
  35. T. Kleinberger, M. Becker, E. Ras, A. Holzinger, P. Müller, in Ambient Intelligence in Assisted Living: Enable Elderly People to Handle Future Interfaces. Universal Access in Human-Computer Interaction, Ambient Interaction, 2007Google Scholar
  36. H.W. Kuhn, A.W. Tucker et al., in Nonlinear Programming. Berkeley Symposium on Mathematical Statistics and Probability (1951)Google Scholar
  37. N. Landwehr, M. Hall, E. Frank, Logistic model trees. Mach. Learn. 59, 161–205 (2005)CrossRefzbMATHGoogle Scholar
  38. N.D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, A.T. Campbell, A survey of mobile phone sensing. IEEE Commun. Mag. 48, 140–150 (2010)Google Scholar
  39. N. Lane, M. Mohammod, M. Lin, X. Yang, H. Lu, S. Ali, A. Doryab, E. Berke, T. Choudhury, A. Campbell, in Bewell: A Smartphone Application to Monitor, Model and Promote Wellbeing. IEEE International ICST Conference on Pervasive Computing Technologies for Healthcare, 2012Google Scholar
  40. O. Lara, M. Labrador, A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tut. 1, 1–18 (2012)Google Scholar
  41. Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989)Google Scholar
  42. A. Mannini, A.M. Sabatini, Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 10, 1154–1175 (2010)Google Scholar
  43. K.P. Murphy, Machine Learning: A Probabilistic Perspective (MIT Press, Cambridge, 2012)Google Scholar
  44. B. Najafi, K. Aminian, F. Loew, Y. Blanc, P.A. Robert, Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly. IEEE Trans. Biomed. Eng. 49, 843–851 (2002)CrossRefGoogle Scholar
  45. M. Ogawa, R. Suzuki, S. Otake, T. Izutsu, T. Iwaya, T. Togawa, in Long Term Remote Behavioral Monitoring of Elderly by Using Sensors Installed in Ordinary Houses. International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, 2002Google Scholar
  46. M.W. Oliphant, The mobile phone meets the internet. IEEE Spectr. 36, 20–28 (1999)CrossRefGoogle Scholar
  47. L. Oneto, N. Greco, Model selection for support vector machines: advantages and disadvantages of the machine learning theory. Master’s thesis, Department of Biophysical and Electronic Engineering (2010)Google Scholar
  48. J. Platt, Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines (Technical report, Microsoft Research, 1998)Google Scholar
  49. R. Poppe, Vision-based human motion analysis: an overview. Comput. Vis. Image Underst. 108, 4–18 (2007)CrossRefGoogle Scholar
  50. J.R. Quinlan, Induction of decision trees. Mach. learn. 1, 81–106 (1986)Google Scholar
  51. J.R. Quinlan, C4. 5: Programs for Machine Learning (Morgan kaufmann, San Francisco, 1993)Google Scholar
  52. N. Ravi, D. Nikhil, P. Mysore, M.L. Littman, in Activity Recognition from Accelerometer Data. Innovative Applications of Artificial Intelligence (2005)Google Scholar
  53. R. Rifkin, A. Klautau, In defense of one-vs-all classification. J. Mach. Learn Res. 5, 101–141 (2004)Google Scholar
  54. S. Shalev-Shwartz, Online learning and online convex optimization. Found. Trends Mach. Learn. 4, 107–194 (2011)CrossRefzbMATHGoogle Scholar
  55. J. Shawe-Taylor, S. Sun, A review of optimization methodologies in support vector machines. Neurocomputing 74, 3609–3618 (2011)CrossRefGoogle Scholar
  56. R.S. Sutton, A.G. Barto, Reinforcement learning: An introduction (Cambridge University Press, Cambridge, 1998)Google Scholar
  57. B. Takač, A. Català, D.R Martín, N. van der Aa, W. Chen, M. Rauterberg, Position and orientation tracking in a ubiquitous monitoring system for parkinson disease patients with freezing of gait symptom. J. Med. Int. Res. 15, 1 (2013)Google Scholar
  58. E. Tapia, S. Intille, L. Lopez, K.Larson, in Newblock. The Design of a Portable Kit of Wireless Sensors for Naturalistic Data Collection. Pervasive Computing, 2006Google Scholar
  59. S. Vijayakumar, T. Shibata, S. Schaal, in Reinforcement Learning for Humanoid Robotics. Autonomous Robot, 2003Google Scholar
  60. J. Weston, C. Watkins, Multi-class support vector machines (University of London, Department of Computer Science, Technical report, 1998)Google Scholar
  61. WHO, World Report on Disability: Summary. Technical report, (UN World Health Organization, 2011)Google Scholar
  62. O.J. Woodman, An Introduction to Inertial Navigation. Technical report, (University of Cambridge, Computer Laboratory, 2007)Google Scholar
  63. W. Wu, S. Dasgupta, E.E. Ramirez, C. Peterson, G.J. Norman, Classification accuracies of physical activities using smartphone motion sensors. J. Med. Internet Res. 14, 105–130 (2012)Google Scholar
  64. C-C. Yang, Y-L. Hsu, A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 10, 7772–7788 (2010)Google Scholar
  65. G.-Z. Yang, M. Yacoub, Body Sensor Networks (Springer, London, 2006)Google Scholar
  66. N. Yazdi, F. Ayazi, K. Najafi, Micromachined inertial sensors. Proc. IEEE 86, 1640–1659 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.CETpDUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations