Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1212 Accesses

Abstract

The bulk of the numerical results for many-body systems contained in this thesis are obtained by variational algorithms on a class of states known as matrix product states (MPSs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By which we mean a spectral gap in the thermodynamic limit, E 1 − E 0 > 0 where E 1 is the energy of the first excited state and E 0 is the energy of the ground state. Finite-sized systems whose infinite counterparts are gapless typically have a gap which vanishes as an inverse polynomial in the system volume.

  2. 2.

    For a counterexample in a non-translationally invariant 1D chain, see [17]. Here, a variant of the Dasgupta–Ma–Fisher renormalization group procedure for random spin chains is used to explicitly construct a spin chain satisfying a volume law. Additionally, as this system is not translationally invariant, the volume law depends crucially on how the system is divided. In fact, there exist divisions for which the entropy of entanglement is identically zero.

  3. 3.

    Rigorously, the central charge is determined by the coefficient of the anomalous term in the commutator of the energy-momentum tensor at two different positions [31]. Hence, c describes the behavior of a conformally invariant system when a macroscopic length scale is introduced.

  4. 4.

    That is to say, the χ that is required to accurately reflect the entanglement structure grows exponentially with the von Neumann entropy.

  5. 5.

    Strictly speaking, this is true only for fixed error. If we require that the error be bounded by an inverse polynomial in the system size, finding a ground state with the given representation is still very difficult [34].

  6. 6.

    By isometric, we mean that this matrix has orthonormal rows. If it were square, it would be unitary, but we are transforming from a χ 2 dimensional space to a χ dimensional space, and so only the rows are orthonormal.

  7. 7.

    That is, at the first iteration we map from the product of the vacuum and a block \(B^{\left (0\right )}\) to a new set of states which is of course identical to the block \(B^{\left (0\right )}\). A similar comment applies to the last iteration.

  8. 8.

    Note that, strictly speaking, DMRG does not maximize entanglement due to a renormalization of the density-matrix spectra induced by truncation [37]. However, for most physical systems this intuition does not cause any pitfalls.

  9. 9.

    This should not be confused with the rank of a matrix, which is the number of nonzero singular values. We shall avoid confusion in this text by referring to the number of nonzero singular values as the matrix rank or rank of a matrix and referring to the definition given here as the tensor rank, the rank of a tensor, or a rank-r tensor.

  10. 10.

    Double precision General Matrix Multiply.

  11. 11.

    Basic Linear Algebra Subprograms, a large collection of numerical routines which were designed to take advantage of the cache structure of modern computers. Using BLAS routines versus naive loops for contractions leads to speedups often of a factor of 4 or more, even when using aggressively optimizing compilers.

  12. 12.

    That is, the algorithm scales as \(\mathcal{O}\left (\chi ^{5}\right )\) but χ PBC = χ OBC for a fixed error in the improved ansatz.

  13. 13.

    Note that this does not affect the canonical form of these two tensors.

  14. 14.

    See Eq. (6.69) for the condition that a left-canonical MPS on an infinite lattice is normalized.

  15. 15.

    Strictly speaking, the transfer operator using the MPS tensors at site j take χ j ×χ j matrices to χ j−1 ×χ j−1 matrices with the given order of operations, but the great numerical use is in infinite systems where χ is uniform across all bonds.

  16. 16.

    For critical systems, the diverging of the correlation length requires us to consider systems with an infinite number of sites. For an MPS algorithm which operates in this limit, see Chap. 8.

  17. 17.

    These irreps are only one-dimensional in the Abelian case. In the non-Abelian case it is still true that the space decomposes into degeneracy spaces and irreps; however, the irreps can have dimensions larger than one.

  18. 18.

    In the physics literature, the Clebsch–Gordan coefficients typically refer to this unitary transformation for the case of SU(2). Here we use it in the more general mathematical sense as the unitary matrix connecting the tensor product of the representation spaces of two irreps of a group to a direct sum of irreducible representation spaces [68].

  19. 19.

    Here we say only that the eigenvectors can be chosen in this way to account for possible energetic degeneracies of two states with differing total particle number. In the presence of such a degeneracy, any linear combination of the degenerate states is also an eigenstate.

  20. 20.

    This construction can also be compared with circuit diagrams demonstrating conservation of charge as specified by Kirchoff’s laws.

  21. 21.

    This is the most significant difference between the Abelian and non-Abelian cases. In the latter, the allowed irreps are enumerated by the Clebsch–Gordan series, and the elements of the unitary matrix relating \(t_{q_{\left (\alpha i\right )}}\) to \(t_{q_{\alpha }}\) and \(t_{q_{i}}\) are nontrivial.

  22. 22.

    This is in fact the definition of a perfect hash function, which is harder to find than a hash function in general but can be explicitly found for our purposes.

References

  1. Schollwöck, U.: The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326(1), 96–192 (2011). doi:10.1016/j.aop.2010.09.012. http://www.sciencedirect.com/science/article/pii/S0003491610001752 (January 2011 Special Issue) [ISSN 0003-4916]

  2. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins Studies in Mathematical Sciences. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  3. Davidson, E.R.: The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 17(1), 87–94 (1975). doi:10.1016/0021-9991(75)90065-0. http://www.sciencedirect.com/science/article/pii/0021999175900650 [ISSN 0021-9991]

  4. Poulin, D., Qarry, A., Somma, R., Verstraete, F.: Quantum simulation of time-dependent hamiltonians and the convenient illusion of hilbert space. Phys. Rev. Lett. 106, 170501 (2011). doi:10.1103/PhysRevLett.106.170501. http://link.aps.org/doi/10.1103/PhysRevLett.106.170501

  5. Huyghebaert, J., De Raedt, H.: Product formula methods for time-dependent Schrodinger problems. J. Phys. A 23(24), 5777 (1990). http://stacks.iop.org/0305-4470/23/i=24/a=019

  6. Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems. McGraw-Hill, New York (1971)

    Google Scholar 

  7. Kitaev, A., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Information. The American Mathematical Society, Providence (2002)

    Google Scholar 

  8. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  9. Dawson, C.M., Nielsen, M.A.: The Solovay-Kitaev algorithm. Quantum Inf. Comput. 6(1), 81–95 (2006)

    MATH  MathSciNet  Google Scholar 

  10. Kliesch, M., Barthel, T., Gogolin, C., Kastoryano, M., Eisert, J.: Dissipative quantum church-turing theorem. Phys. Rev. Lett. 107, 120501 (2011). doi:10.1103/PhysRevLett.107.120501. http://link.aps.org/doi/10.1103/PhysRevLett.107.120501

  11. Srednicki, M.: Entropy and area. Phys. Rev. Lett. 71, 666–669 (1993). doi:10.1103/PhysRevLett.71.666. http://link.aps.org/doi/10.1103/PhysRevLett.71.666

  12. Holzhey, C., Larsen, F., Wilczek, F.: Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B 424(3), 443–467 (1994). doi:10.1016/0550-3213(94)90402-2. ISSN 0550-3213. http://www.sciencedirect.com/science/article/pii/0550321394904022

  13. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003). doi:10.1103/PhysRevLett.90.227902. http://link.aps.org/doi/10.1103/PhysRevLett.90.227902

  14. Calabrese, P., Cardy, J.: Entanglement entropy and quantum field theory. J. Stat. Mech. 2004(06), P06002 (2004). http://stacks.iop.org/1742-5468/2004/i=06/a=P06002

  15. Eisert, J., Cramer, M., Plenio, M.B.: Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277–306 (2010). doi:10.1103/RevModPhys.82.277. http://link.aps.org/doi/10.1103/RevModPhys.82.277

  16. Hastings, M.B.: An area law for one-dimensional quantum systems. J. Stat. Mech. 2007(10), P08024 (2007)

    MathSciNet  Google Scholar 

  17. Vitagliano, G., Riera, A., Latorre, J.I.: Volume-law scaling for the entanglement entropy in spin-1/2 chains. New J. Phys. 12(11), 113049 (2010). http://stacks.iop.org/1367-2630/12/i=11/a=113049

  18. Wolf, M.M., Verstraete, F., Hastings, M.B., Cirac, J.I.: Area laws in quantum systems: Mutual information and correlations. Phys. Rev. Lett. 100, 070502 (2008). doi:10.1103/PhysRevLett.100.070502. http://link.aps.org/doi/10.1103/PhysRevLett.100.070502

  19. Adams, A., Carr, L.D., Schaefer, T., Steinberg, P., Thomas, J.E.: Strongly correlated quantum fluids: Ultracold quantum gases, quantum chromodynamic plasmas, and holographic duality. New J. Phys. arXiv:1205.5180v1 (2012)

    Google Scholar 

  20. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973). doi:10.1103/PhysRevD.7.2333. http://link.aps.org/doi/10.1103/PhysRevD.7.2333

  21. Bousso, R.: The holographic principle. Rev. Mod. Phys. 74, 825–874 (2002). doi:10.1103/RevModPhys.74.825. http://link.aps.org/doi/10.1103/RevModPhys.74.825

  22. Osborne, T.J., Eisert, J., Verstraete, F.: Holographic quantum states. Phys. Rev. Lett. 105, 260401 (2010). doi:10.1103/PhysRevLett.105.260401. http://link.aps.org/doi/10.1103/PhysRevLett.105.260401

  23. Cirac, J.I., Poilblanc, D., Schuch, N., Verstraete, F.: Entanglement spectrum and boundary theories with projected entangled-pair states. Phys. Rev. B 83, 245134 (2011). doi:10.1103/PhysRevB.83.245134. http://link.aps.org/doi/10.1103/PhysRevB.83.245134

  24. Wolf, M.M.: Violation of the entropic area law for fermions. Phys. Rev. Lett. 96, 010404 (2006). doi:10.1103/PhysRevLett.96.010404. http://link.aps.org/doi/10.1103/PhysRevLett.96.010404

  25. Gioev, D., Klich, I.: Entanglement entropy of fermions in any dimension and the widom conjecture. Phys. Rev. Lett. 96, 100503 (2006). doi:10.1103/PhysRevLett.96.100503. http://link.aps.org/doi/10.1103/PhysRevLett.96.100503

  26. Plenio, M.B., Eisert, J., Dreißig, J., Cramer, M.: Entropy, entanglement, and area: Analytical results for harmonic lattice systems. Phys. Rev. Lett. 94, 060503 (2005). doi:10.1103/PhysRevLett.94.060503. http://link.aps.org/doi/10.1103/PhysRevLett.94.060503

  27. Cramer, M., Eisert, J., Plenio, M.B., Dreißig, J.: Entanglement-area law for general bosonic harmonic lattice systems. Phys. Rev. A 73, 012309 (2006). doi:10.1103/PhysRevA.73.012309. http://link.aps.org/doi/10.1103/PhysRevA.73.012309

  28. Cramer, M., Eisert, J.: Correlations, spectral gap and entanglement in harmonic quantum systems on generic lattices. New J. Phys. 8(5), 71 (2006). http://stacks.iop.org/1367-2630/8/i=5/a=071

  29. Cardy, J.: Scaling and Renormalization in Statistical Physics. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  30. Calabrese, P., Cardy, J.: Entanglement entropy and conformal field theory. J. Phys. A Math. Theor. 42(50), 504005 (2009). http://stacks.iop.org/1751-8121/42/i=50/a=504005

  31. Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal Field Theory. Springer, New York (1997)

    Book  MATH  Google Scholar 

  32. Verstraete, F., Porras, D., Cirac, J.I.: Density matrix renormalization group and periodic boundary conditions: A quantum information perspective. Phys. Rev. Lett. 93(22), 227205 (2004). doi:10.1103/PhysRevLett.93.227205

    Article  ADS  Google Scholar 

  33. Verstraete, F., Cirac, J.I.: Matrix product states represent ground states faithfully. Phys. Rev. B 73, 094423 (2006). http://link.aps.org/abstract/PRB/v73/e094423

  34. Schuch, N., Cirac, I., Verstraete, F.: Computational difficulty of finding matrix product ground states. Phys. Rev. Lett. 100, 250501 (2008). doi:10.1103/PhysRevLett.100.250501. http://link.aps.org/doi/10.1103/PhysRevLett.100.250501

  35. Wilson, K.G.: The renormalization group: Critical phenomena and the kondo problem. Rev. Mod. Phys. 47, 773–840 (1975)

    Article  ADS  Google Scholar 

  36. White, S.R.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69(19), 2863–2866 (1992). doi:10.1103/PhysRevLett.69.2863

    Article  ADS  Google Scholar 

  37. Schollwock, U.: The density-matrix renormalization group. Rev. Mod. Phys. 77, 259 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  38. Schmidt, E.: Zur Theorie der linearen und nichtlinearen Integralgleichungen. Math. Ann. 63, 433–476 (1907). doi:10.1007/BF01449770. ISSN 0025-5831. http://dx.doi.org/10.1007/BF01449770.

  39. Östlund, S., Rommer, S.: Thermodynamic limit of density matrix renormalization. Phys. Rev. Lett. 75(19), 3537–3540 (1995). doi:10.1103/PhysRevLett.75.3537

    Article  ADS  Google Scholar 

  40. Rommer, S., Östlund, S.: Class of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization group. Phys. Rev. B 55(4), 2164–2181 (1997). doi:10.1103/PhysRevB.55.2164

    Article  ADS  Google Scholar 

  41. Basic Linear Algebra Subprograms: http://www.netlib.org/blas

  42. Shi, Y.-Y., Duan, L.-M., Vidal, G.: Classical simulation of quantum many-body systems with a tree tensor network. Phys. Rev. A 74(2), 022320 (2006). doi:10.1103/PhysRevA.74.022320. http://link.aps.org/abstract/PRA/v74/e022320

  43. Verstraete, F., Cirac, J.I.: Renormalization algorithms for quantum many-body systems in two and higher dimensions. arXiv:cond-mat/0407066v1 (2004)

    Google Scholar 

  44. Verstraete, F., Murg, V., Cirac, J.I.: Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57(2), 143–224 (2008). doi:10.1080/14789940801912366. http://www.tandfonline.com/doi/abs/10.1080/14789940801912366

  45. Vidal, G.: Entanglement renormalization. Phys. Rev. Lett. 99, 220405 (2007)

    Article  ADS  Google Scholar 

  46. Evenbly, G., Vidal, G.: Entanglement renormalization in two spatial dimensions. Phys. Rev. Lett. 102(18), 180406 (2009). doi:10.1103/PhysRevLett.102.180406

    Article  ADS  Google Scholar 

  47. Pippan, P., White, S.R., Evertz, H.G.: Efficient matrix-product state method for periodic boundary conditions. Phys. Rev. B 81(8), 081103 (2010). doi:10.1103/PhysRevB.81.081103

    Article  ADS  Google Scholar 

  48. Pirvu, B., Verstraete, F., Vidal, G.: Exploiting translational invariance in matrix product state simulations of spin chains with periodic boundary conditions. Phys. Rev. B 83, 125104 (2011). doi:10.1103/PhysRevB.83.125104. http://link.aps.org/doi/10.1103/PhysRevB.83.125104

  49. Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902–1–4 (2003)

    Google Scholar 

  50. Vidal, G.: Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett. 93, 040502–1–4 (2004)

    Google Scholar 

  51. Wheeler, J.A., Zurek, W.H. (eds.): Quantum Theory and Measurement. Princeton University Press, Princeton, NJ (1983)

    Google Scholar 

  52. Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H., Zeilinger, A.: Observation of three-photon greenberger-horne-zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999). doi:10.1103/PhysRevLett.82.1345. http://link.aps.org/doi/10.1103/PhysRevLett.82.1345

  53. Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59, 799–802 (1987). doi:10.1103/PhysRevLett.59.799. http://link.aps.org/doi/10.1103/PhysRevLett.59.799

  54. Hastings, M.B.: Solving gapped hamiltonians locally. Phys. Rev. B 73, 085115 (2006). doi:10.1103/PhysRevB.73.085115. http://link.aps.org/doi/10.1103/PhysRevB.73.085115

  55. Perez-Garcia, D., Verstraete, F., Wolf, M.M., Cirac, J.I.: Matrix product state representations. Quantum Inf. Comput. 7(401), (2007)

    Google Scholar 

  56. Pollmann, F., Mukerjee, S., Turner, A.M., Moore, J.E.: Theory of finite-entanglement scaling at one-dimensional quantum critical points. Phys. Rev. Lett. 102, 255701 (2009). doi:10.1103/PhysRevLett.102.255701. http://link.aps.org/doi/10.1103/PhysRevLett.102.255701

  57. Barber, M.N.: In: Domb, C., Lebowitz, J.L. (eds) Phase Transitions and Critical Phenomena, vol. 8. Academic, New York (1983)

    Google Scholar 

  58. Pirvu, B., Vidal, G., Verstraete, F., Tagliacozzo, L.: Matrix product states for critical spin chains: Finite size scaling versus finite entanglement scaling (2012). http://arxiv.org/abs/1204.3934

  59. Daley, A.J.: Manipulation and simulation of cold Atoms in optical lattices. Ph.D. Thesis, Leopold-Franzens-Universität Innsbruck (2005)

    Google Scholar 

  60. McCulloch, I.P., Gulácsi, M.: The non-Abelian density matrix renormalization group algorithm. EPL (Europhys. Lett.) 57(6), 852 (2002). http://stacks.iop.org/0295-5075/57/i=6/a=852

  61. McCulloch, I.P.: From density-matrix renormalization group to matrix product states. J. Stat. Mech. 2007(10), P10014 (2007). http://stacks.iop.org/1742-5468/2007/i=10/a=P10014

  62. Singh, S., Zhou, H.-Q., Vidal, G.; Simulation of one-dimensional quantum systems with a global SU(2) symmetry. New J. Phys. 12(3), 033029 (2010). http://stacks.iop.org/1367-2630/12/i=3/a=033029

  63. Singh, S., Pfeifer, R.N.C., Vidal, G.: Tensor network states and algorithms in the presence of a global U(1) symmetry. Phys. Rev. B 83, 115125 (2011). doi:10.1103/PhysRevB.83.115125. http://link.aps.org/doi/10.1103/PhysRevB.83.115125

  64. Singh, S., Pfeifer, R.N.C., Vidal, G.: Tensor network decompositions in the presence of a global symmetry. Phys. Rev. A 82, 050301 (2010). doi:10.1103/PhysRevA.82.050301. http://link.aps.org/doi/10.1103/PhysRevA.82.050301

  65. Bauer, B., Corboz, P., Orús, R., Troyer, M.: Implementing global Abelian symmetries in projected entangled-pair state algorithms. Phys. Rev. B 83, 125106 (2011). doi:10.1103/PhysRevB.83.125106. http://link.aps.org/doi/10.1103/PhysRevB.83.125106

  66. Wigner, E.P.: Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Academic, New York (1959)

    MATH  Google Scholar 

  67. Hamermesh, M.: Group Theory and Its Application to Physical Problems. Dover, New York (1989)

    Google Scholar 

  68. Alex, A., Kalus, M., Huckleberry, A., von Delft, J.: A numerical algorithm for the explicit calculation of SU(N) and SL(N, \(\mathbb{C}\)) clebschgordan coefficients. J. Math. Phys. 52, 023507 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  69. Keown, R.M.: An Introduction to Group Representation Theory. Academic, New York (1975)

    MATH  Google Scholar 

  70. Knuth, D.E.: The Art of Computer Programming. Addison-Wesley, Reading (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wall, M.L. (2015). Matrix Product States: Foundations. In: Quantum Many-Body Physics of Ultracold Molecules in Optical Lattices. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-14252-4_6

Download citation

Publish with us

Policies and ethics