Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1086 Accesses

Abstract

According to the postulates of quantum mechanics, a quantum system is completely specified by the state \(\vert \psi \left (t\right )\rangle\) whose evolution is provided by the Schrödinger equation

$$\begin{array}{rlrlrl} i\hslash \frac{\partial } {\partial t}\vert \psi \left (t\right )\rangle & =\hat{ H}\vert \psi \left (t\right )\rangle. &\end{array}$$
(1.1)

Here, \(\hat{H}\) is the Hamiltonian describing the interactions of all of the microscopic degrees of freedom in the system under study. Unfortunately, the dimension of the Hilbert space in which the state \(\vert \psi \left (t\right )\rangle\) lives grows exponentially with the number of constituents in a many-body system, rendering Eq. (1.1) essentially useless for extracting physically relevant information from systems with more than a few particles. Practical concerns aside, there is a more fundamental reason why Eq. (1.1) does not enable us to answer all relevant questions in many-body physics. This reason is put succinctly by P.W. Anderson in his now famous article “More is different” [1] when he says that “The ability to reduce everything to simple fundamental laws does not imply the ability to start from those laws and reconstruct the universe.” That is to say, many-body systems can display very different, emergent, behavior from their microscopic constituents. In particular, the ground state of a many-body system need not have the same symmetry as its governing Hamiltonian due to the phenomenon of spontaneous symmetry breaking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The precise sense in which we mean the system is weakly interacting is that it is not strongly correlated, the latter of which will be defined below. In particular, by weakly interacting we do not mean that the interactions lie within the radius of convergence of a perturbation series.

  2. 2.

    In the absence of exponential decay, the correlation length may be taken to be a length scale on which correlations qualitatively shift to a long-distance behavior.

  3. 3.

    By ultracold, we mean temperatures less than 1 μK.

  4. 4.

    This is what differentiates a Feshbach resonance from a shape resonance. In the latter no bound state exists in the absence of the coupling.

  5. 5.

    Note that the effective range given in the context of scattering of slow particles, r , is related to the effective range defined here as \(r_{\star } = -2r_{B}\).

  6. 6.

    The spin states of real atoms are never purely singlet or triplet, but rather singlet-dominated or triplet-dominated.

  7. 7.

    An overview of molecular degrees of freedom is provided in Sect. 1.3.

  8. 8.

    The dynamic polarizability of LiCs has not yet been calculated, to our knowledge. We estimate that the ratio of the perpendicular and parallel polarizabilities will be similar to that of KRb and RbCs.

  9. 9.

    Explicitly, it would imply that a Quantum Merlin–Arthur (QMA)-complete problem lies in P, where P is the class of problems which can be solved in polynomial time by a deterministic Turing machine. QMA is the quantum analog to the classical complexity class NP.

  10. 10.

    Series expansions often employ a diagrammatic notation for the terms in the series, hence the name diagrammatic Monte Carlo.

References

  1. Anderson, P.W.: More is different. Science 177, 393–396 (1972)

    Article  ADS  Google Scholar 

  2. Anderson, P.W.: Basic Notions of Condensed Matter Physics. Addison-Wesley, New York (1984)

    Google Scholar 

  3. Nozières, P., Pines, D.: The Theory of Quantum Liquids, vol. II. Addison-Wesley, New York (1990)

    Google Scholar 

  4. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, New York (1999)

    Google Scholar 

  5. Laughlin, R.B.: Anomalous quantum hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983). doi:10.1103/PhysRevLett.50.1395. http://link.aps.org/doi/10.1103/PhysRevLett.50.1395

  6. Halperin, B.I.: Statistics of quasiparticles and the hierarchy of fractional quantized hall states. Phys. Rev. Lett. 52, 1583–1586 (1984). doi:10.1103/PhysRevLett.52.1583. http://link.aps.org/doi/10.1103/PhysRevLett.52.1583

  7. Arovas, D., Schrieffer, J.R., Wilczek, F.: Fractional statistics and the quantum hall effect. Phys. Rev. Lett. 53, 722–723 (1984). doi:10.1103/PhysRevLett.53.722. http://link.aps.org/doi/10.1103/PhysRevLett.53.722

  8. Wilson, K.G.: The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773–840 (1975)

    Article  ADS  Google Scholar 

  9. White, S.R.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992)

    Article  ADS  Google Scholar 

  10. Östlund, S., Rommer, S.: Thermodynamic limit of density matrix renormalization. Phys. Rev. Lett. 75(19), 3537–3540 (1995). doi:10.1103/PhysRevLett.75.3537

    Article  ADS  Google Scholar 

  11. Rommer, S., Östlund, S.: Class of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization group. Phys. Rev. B 55(4), 2164–2181 (1997). doi:10.1103/PhysRevB.55.2164

    Article  ADS  Google Scholar 

  12. Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91(14), 147902 (2003). doi:10.1103/PhysRevLett.91.147902

    Article  ADS  Google Scholar 

  13. Vidal, G.: Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett. 93(4), 040502 (2004). doi:10.1103/PhysRevLett.93.040502

    Article  ADS  Google Scholar 

  14. Daley, A.J., Kollath, C., Schollwöck, U., Vidal, G.: Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces. J. Stat. Mech. 2004(04), P04005 (2004). http://stacks.iop.org/1742-5468/2004/i=04/a=P04005

  15. Verstraete, F., Porras, D., Cirac, J.I.: Density matrix renormalization group and periodic boundary conditions: A quantum information perspective. Phys. Rev. Lett. 93(22), 227205 (2004). doi:10.1103/PhysRevLett.93.227205

    Article  ADS  Google Scholar 

  16. Verstraete, F., Cirac, J.I.: Renormalization algorithms for quantum many-body systems in two and higher dimensions (2004) [arXiv:cond-mat/0407066v1]

    Google Scholar 

  17. Verstraete, F., Murg, V., Cirac, J.I.: Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57(2), 143–224 (2008). doi:10.1080/14789940801912366. http://www.tandfonline.com/doi/abs/10.1080/14789940801912366

  18. Vidal, G.: Entanglement renormalization. Phys. Rev. Lett. 99, 220405 (2007)

    Article  ADS  Google Scholar 

  19. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  21. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965). doi:10.1103/PhysRev.140.A1133. http://link.aps.org/doi/10.1103/PhysRev.140.A1133

  22. SIESTA package for real space density functional theory (2002). http://www.icmab.es/siesta/

  23. ABINIT package for plane wave density functional theory (2004). http://www.abinit.org/

  24. OCTOPUS package for time-dependent density functional theory (2002). http://www.tddft.org/programs/octopus/wiki/index.php/Main_Page

  25. Metcalf, H.J., van der Straten, P.: Laser Cooling. Springer, New York (1999)

    Book  Google Scholar 

  26. Ketterle, W., van Druten, N.J.: Evaporative cooling of atoms. Adv. At. Mol. Opt. Phys. 37, 181 (1996)

    ADS  Google Scholar 

  27. Pethick, C.J., Smith, H.: Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  28. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  ADS  Google Scholar 

  29. Davis, K.B., Mewes, M.-O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3972 (1995)

    Article  ADS  Google Scholar 

  30. Bradley, C.C., Sackett, C.A., Tollett, J.J., Hulet, R.G.: Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687 (1995)

    Article  ADS  Google Scholar 

  31. Sackett, C.A., Stoof, H.T.C., Hulet, R.G.: Growth and collapse of a Bose-Einstein condensate with attractive interactions. Phys. Rev. Lett. 80, 2031–2034 (1998)

    Article  ADS  Google Scholar 

  32. DeMarco, B., Jin, D.S.: Onset of Fermi degeneracy in a trapped atomic gas. Science 285, 1703–1706 (1999)

    Article  Google Scholar 

  33. Roati, G., Riboli, F., Modugno, G., Inguscio, M.: Fermi-Bose quantum degenerate 40K-87Rb mixture with attractive interaction. Phys. Rev. Lett. 89, 150403–1–4 (2002)

    Google Scholar 

  34. Hadzibabic, Z., Gupta, S., Stan, C.A., Schunck, C.H., Zwierlein, M.W., Dieckmann, K., Ketterle, W.: Fifty-fold improvement in the number of quantum degenerate fermionic atoms. Phys. Rev. Lett. 91, 160401–1–4 (2003)

    Google Scholar 

  35. Holland, M.J., DeMarco, B., Jin, D.S.: Evaporative cooling of a two-component degenerate Fermi gas. Phys. Rev. A 61, 53610 (2000)

    Article  ADS  Google Scholar 

  36. Greiner, M., Mandel, O., Esslinger, T., Hansch, T.W., Bloch, I.: Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)

    Article  ADS  Google Scholar 

  37. Greiner, M., Mandel, O., Hansch, T.W., Bloch, I.: Collapse and revival of the matter wave field of a Bose-Einstein condensate. Nature 419, 51–54 (2002)

    Article  ADS  Google Scholar 

  38. Chin, C., Grimm, R., Julienne, P., Tiesinga, E.: Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010). doi:10.1103/RevModPhys.82.1225. http://link.aps.org/doi/10.1103/RevModPhys.82.1225

  39. Martin, P.J., Oldaker, B.G., Miklich, A.H., Pritchard, D.E.: Bragg scattering of atoms from a standing light wave. Phys. Rev. Lett. 60, 515–518 (1988). doi:10.1103/PhysRevLett.60.515. http://link.aps.org/doi/10.1103/PhysRevLett.60.515

  40. Blakie, P.B., Clark, C.W.: Wannier states and Bose-Hubbard parameters for 2D optical lattices. J. Phys. B 37, 1391–1404 (2004)

    Article  ADS  Google Scholar 

  41. Stöferle, T., Moritz, H., Schori, C., Köhl, M., Esslinger, T.: Transition from a strongly interacting 1D superfluid to a mott insulator. Phys. Rev. Lett. 92, 130403 (2004). doi:10.1103/PhysRevLett.92.130403. http://link.aps.org/doi/10.1103/PhysRevLett.92.130403

  42. Paredes, B., Widera, A., Murg, V., Mandel, O., Folling, S., Cirac, I., Shlyapnikov, G.V., Hansch, T.W.: Tonks-Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2005)

    Article  ADS  Google Scholar 

  43. Mandel, O., Greiner, M., Widera, A., Rom, T., Hänsch, T.W., Bloch, I.: Coherent transport of neutral atoms in spin-dependent optical lattice potentials. Phys. Rev. Lett. 91, 010407 (2003)

    Article  ADS  Google Scholar 

  44. Lewenstein, M.S.A., Ahufinger, V., Damski, B., Sen De, A., Sen, U.: Ultracold atomic gases in optical lattices: Mimicking condensed matter physics and beyond. Adv. Phys. 56, 243–379 (2007)

    Article  ADS  Google Scholar 

  45. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  46. Jaksch, D., Bruder, C., Cirac, J.I., Gardiner, C.W., Zoller, P.: Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81(15), 3108–3111 (1998). doi:10.1103/PhysRevLett.81.3108

    Article  ADS  Google Scholar 

  47. Fisher, M.P.A., Weichman, P.B., Grinstein, G., Fisher, D.S.: Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989)

    Article  ADS  Google Scholar 

  48. Feshbach, H.: A unified theory of nuclear reactions, II. Ann. Phys. 19(2), 287–313 (1962). doi:DOI:10.1016/0003-4916(62)90221-X. http://www.sciencedirect.com/science/article/pii/000349166290221X [ISSN 0003-4916]

  49. Petrov, D.S., Salomon, C., Shlyapnikov, G.V.: Diatomic molecules in ultracold Fermi gases-novel composite bosons. J. Phys. B 38(9), S645 (2005). http://stacks.iop.org/0953-4075/38/i=9/a=014

  50. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics (Non-relativistic Theory), vol. 3. Pergamon, Tarrytown (1977)

    Google Scholar 

  51. Lee, T.D., Huang, K., Yang, C.N.: Eigenvalues and eigenfunctions of a bose system of hard spheres and its low-temperature properties. Phys. Rev. 106(6), 1135–1145 (1957). doi:10.1103/PhysRev.106.1135

    Article  ADS  MATH  MathSciNet  Google Scholar 

  52. Idziaszek, Z., Calarco, T.: Pseudopotential method for higher partial wave scattering. Phys. Rev. Lett. 96, 013201 (2006). doi:10.1103/PhysRevLett.96.013201. http://link.aps.org/doi/10.1103/PhysRevLett.96.013201

  53. Bahns, J.T., Stwalley, W.C., Gould, P.L.: Laser cooling of molecules: A sequential scheme for rotation, translation, and vibration. J. Chem. Phys. 104(24), 9689–9697 (1996). doi:10.1063/1.471731 [ISSN 0021-9606]

  54. Di Rosa, M.D.: Laser-cooling molecules. Eur. Phys. J. D 31, 395–402 (2004). doi:10.1140/epjd/e2004-00167-2. http://dx.doi.org/10.1140/epjd/e2004-00167-2 [ISSN 1434-6060]

  55. Stuhl, B.K., Sawyer, B.C., Wang, D., Ye, J.: Magneto-optical trap for polar molecules. Phys. Rev. Lett. 101, 243002 (2008). doi:10.1103/PhysRevLett.101.243002. http://link.aps.org/doi/10.1103/PhysRevLett.101.243002

  56. Robicheaux, F.: A proposal for laser cooling of OH molecules. J. Phys. B 42(19), 195301 (2009). http://stacks.iop.org/0953-4075/42/i=19/a=195301

  57. Morigi, G., Pinkse, P.W.H., Kowalewski, M., de Vivie-Riedle, R.: Cavity cooling of internal molecular motion. Phys. Rev. Lett. 99, 073001 (2007). doi:10.1103/PhysRevLett.99.073001. http://link.aps.org/doi/10.1103/PhysRevLett.99.073001

  58. Lev, B.L., Vukics, A., Hudson, E.R., Sawyer, B.C., Domokos, P., Ritsch, H., Ye, J.: Prospects for the cavity-assisted laser cooling of molecules. Phys. Rev. A 77, 023402 (2008). doi:10.1103/PhysRevA.77.023402. http://link.aps.org/doi/10.1103/PhysRevA.77.023402

  59. Wallquist, M., Rabl, P., Lukin, M.D., Zoller, P.: Theory of cavity-assisted microwave cooling of polar molecules. New J. Phys. 10(6), 063005 (2008). http://stacks.iop.org/1367-2630/10/i=6/a=063005

  60. Idziaszek, Z., Calarco, T., Zoller, P.: Ion-assisted ground-state cooling of a trapped polar molecule. Phys. Rev. A 83, 053413 (2011). doi:10.1103/PhysRevA.83.053413. http://link.aps.org/doi/10.1103/PhysRevA.83.053413

  61. Huber, S.D., Büchler, H.P.: Dipole-interaction-mediated laser cooling of polar molecules to ultracold temperatures. Phys. Rev. Lett. 108, 193006 (2012). doi:10.1103/PhysRevLett.108.193006. http://link.aps.org/doi/10.1103/PhysRevLett.108.193006

  62. Zhao, B., Glaetzle, A.W., Pupillo, G., Zoller, P.: Atomic rydberg reservoirs for polar molecules. Phys. Rev. Lett. 108, 193007 (2012). doi:10.1103/PhysRevLett.108.193007. http://link.aps.org/doi/10.1103/PhysRevLett.108.193007

  63. Shuman, E.S., Barry, J.F., DeMille, D.: Laser cooling of a diatomic molecule. Nature 467(7317), 820–823 (2010). doi:10.1038/nature09443. http://dx.doi.org/10.1038/nature09443 [ISSN 0028-0836]

  64. Egorov, D., Lahaye, T., Schöllkopf, W., Friedrich, B., Doyle, J.M.: Buffer-gas cooling of atomic and molecular beams. Phys. Rev. A 66, 043401 (2002)

    Article  ADS  Google Scholar 

  65. van de Meerakker, S.Y.T., Bethlem, H.L., Vanhaecke, N., Meijer, G.: Manipulation and control of molecular beams. Chem. Rev. 112(9), 4828–4878 (2012). doi:10.1021/cr200349r. http://pubs.acs.org/doi/abs/10.1021/cr200349r

  66. Bethlem, H.L., Berden, G., Meijer, G.: Decelerating neutral dipolar molecules. Phys. Rev. Lett. 83, 1558–1561 (1999). doi:10.1103/PhysRevLett.83.1558. http://link.aps.org/doi/10.1103/PhysRevLett.83.1558

  67. Bochinski, J.R., Lewandowski H.J., Sawyer, B.C., Hudson, E.R., Ye, J.: Efficient Stark deceleration of cold polar molecules. Eur. J. Phys. D 31, 351–358 (2004)

    Article  ADS  Google Scholar 

  68. Strebel, M., Spieler, S., Stienkemeier, F., Mudrich, M.: Guiding slow polar molecules with a charged wire. Phys. Rev. A 84, 053430 (2011). doi:10.1103/PhysRevA.84.053430. http://link.aps.org/doi/10.1103/PhysRevA.84.053430

  69. Hogan, S.D., Sprecher, D., Andrist, M., Vanhaecke, N., Merkt, F.: Zeeman deceleration of H and D. Phys. Rev. A 76, 023412 (2007). doi:10.1103/PhysRevA.76.023412. http://link.aps.org/doi/10.1103/PhysRevA.76.023412

  70. Hogan, S.D., Motsch, M., Merkt, F.: Deceleration of supersonic beams using inhomogeneous electric and magnetic fields. Phys. Chem. Chem. Phys. 13, 18705–18723 (2011). doi:10.1039/C1CP21733J. http://dx.doi.org/10.1039/C1CP21733J

  71. Fulton R., Bishop, A.I., Shneider, M.N., Barker P.F.: Controlling the motion of cold molecules with deep periodic optical potentials. Nat. Phys. 2(7), 465–468 (2006). doi:10.1038/nphys339. http://dx.doi.org/10.1038/nphys339 [ISSN 1745-2473]

  72. Bishop, A.I., Wang, L., Barker, P.F.: Creating cold stationary molecular gases by optical stark deceleration. New J. Phys. 12(7), 073028 (2010). http://stacks.iop.org/1367-2630/12/i=7/a=073028

  73. Barry, J.F., Shuman, E.S., Norrgard, E.B., DeMille, D.: Laser radiation pressure slowing of a molecular beam. Phys. Rev. Lett. 108, 103002 (2012). doi:10.1103/PhysRevLett.108.103002. http://link.aps.org/doi/10.1103/PhysRevLett.108.103002

  74. Band, Y.B., Julienne, L.: Ultracold-molecule production by laser-cooled atom photoassociation. Phys. Rev. A 51, R4317–R4320 (1995). doi:10.1103/PhysRevA.51.R4317. http://link.aps.org/doi/10.1103/PhysRevA.51.R4317

  75. Jones, K.M., Tiesinga, E., Lett, P.D., Julienne, P.S.: Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering. Rev. Mod. Phys. 78, 483–535 (2006). doi:10.1103/RevModPhys.78.483. http://link.aps.org/doi/10.1103/RevModPhys.78.483

  76. Takekoshi, T., Patterson, B.M., Knize, R.J.: Observation of optically trapped cold cesium molecules. Phys. Rev. Lett. 81, 5105–5108 (1998). doi:10.1103/PhysRevLett.81.5105. http://link.aps.org/doi/10.1103/PhysRevLett.81.5105

  77. Kerman, A.J., Sage, J.M., Sainis, S., Bergeman, T., DeMille, D.: Production and state-selective detection of ultracold RbCs molecules. Phys. Rev. Lett. 92, 153001 (2004). doi:10.1103/PhysRevLett.92.153001. http://link.aps.org/doi/10.1103/PhysRevLett.92.153001

  78. Köhler, T., Góral, K., Julienne, P.S.: Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311–1361 (2006). doi:10.1103/RevModPhys.78.1311. http://link.aps.org/doi/10.1103/RevModPhys.78.1311

  79. Ospelkaus, C., Ospelkaus, S., Humbert, L., Ernst, P., Sengstock, K., Bongs, K.: Ultracold heteronuclear molecules in a 3D optical lattice. Phys. Rev. Lett. 97(12), 120402 (2006). doi:10.1103/PhysRevLett.97.120402. http://link.aps.org/abstract/PRL/v97/e120402

  80. Zirbel, J.J., Ni, K.-K., Ospelkaus, S., D’Incao, J.P., Wieman, C.E., Ye, J., Jin, D.S.: Collisional stability of fermionic feshbach molecules. Phys. Rev. Lett. 100, 143201 (2008). doi:10.1103/PhysRevLett.100.143201. http://link.aps.org/doi/10.1103/PhysRevLett.100.143201

  81. Zirbel, J.J., Ni, K.-K., Ospelkaus, S., Nicholson, T.L., Olsen, M.L., Julienne, P.S., Wieman, C.E., Ye, J., Jin, D.S.: Heteronuclear molecules in an optical dipole trap. Phys. Rev. A 78, 013416 (2008). doi:10.1103/PhysRevA.78.013416. http://link.aps.org/doi/10.1103/PhysRevA.78.013416

  82. Ni, K.-K., Ospelkaus, S., de Miranda, M.H.G., Peér, A., Neyenhuis, B., Zirbel, J.J., Kotochigova, S., Julienne, P.S., Jin, D.S., Ye, J.: A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008)

    Article  ADS  Google Scholar 

  83. Klempt, C., Henninger, T., Topic, O., Scherer, M., Kattner, L., Tiemann, E., Ertmer, W., Arlt, J.J.: Radio-frequency association of heteronuclear Feshbach molecules. Phys. Rev. A 78, 061602 (2008). doi:10.1103/PhysRevA.78.061602. http://link.aps.org/doi/10.1103/PhysRevA.78.061602

  84. Voigt, A.-C., Taglieber, M., Costa, L., Aoki, T., Wieser, W., Hänsch, T.W., Dieckmann, K.: Ultracold heteronuclear fermi-fermi molecules. Phys. Rev. Lett. 102(2), 020405 (2009). doi:10.1103/PhysRevLett.102.020405

    Article  ADS  Google Scholar 

  85. Heo, M.-S., Wang, T.T., Christensen, C.A., Rvachov, T.M., Cotta, D.A., Choi, J.-H., Lee, Y.-R., Ketterle, W.: Formation of ultracold fermionic NaLi Feshbach molecules (2012) [e-print arXiv.org:1205.5304]

    Google Scholar 

  86. Wu, C.-H., Park, J.W., Ahmadi, P., Will, S., Zwierlein, M.W.: Ultracold fermionic Feshbach molecules of23Na40K (2012) [e-print arXiv.org:1206.5023]

    Google Scholar 

  87. Jochim, S., Bartenstein, M., Altmeyer, A., Hendl, G., Chin, C., Denschlag, J.H., Grimm, R.: Pure gas of optically trapped molecules created from fermionic atoms. Phys. Rev. Lett. 91, 240402–1–4 (2003)

    Google Scholar 

  88. Jochim, S., Bartenstein, M., Altmeyer, A., Riedl, S., Chin, C., Denschlag, J.H., Grimm, R.: Bose-Einstein condensation of molecules. Science 302, 2102–2103 (2003)

    Article  ADS  Google Scholar 

  89. Greiner, M., Regal, C.A., Jin, D.S.: Emergence of a molecular Bose-Einstein condensate from a Fermi gas. Nature 426, 437–540 (2003)

    Google Scholar 

  90. Xu, K., Mukaiyama, T., Abo-Shaeer, J.R., Chin, J.K., Miller, D.E., Ketterle, W.: Formation of quantum-degenerate sodium molecules. Phys. Rev. Lett. 91, 210402–1–4 (2003)

    Google Scholar 

  91. Regal, C.A., Greiner, M., Jin, D.S.: Observation of resonance condensation of fermionic atom pairs. Phys. Rev. Lett. 92, 040403–1–4 (2004)

    Google Scholar 

  92. Zwierlein, M.W., Stan, C.A., Schunck, C.H., Raupach, S.M.F., Kerman, A.J., Ketterle, W.: Condensation of pairs of fermionic atoms near a Feshbach resonance. Phys. Rev. Lett. 92, 120403–1–4 (2004)

    Google Scholar 

  93. Bourdel, T., Khaykovich, L., Cubizolles, J., Zhang, J., Chevy, F., Teichmann, M., Tarruell, L., Kokkelmans, S.J. J.M.F., Salomon, C.: Experimental study of the BEC-BCS crossover region in lithium 6. Phys. Rev. Lett. 93, 050401–1–4 (2004)

    Google Scholar 

  94. Herbig, J., Kraemer, T., Mark, M., Weber, T., Chin, C., Ngerl, H.-C., Grimm, R.: Preparation of a pure molecular quantum gas. Science 301(5639), 1510–1513 (2003). doi:10.1126/science.1088876. http://www.sciencemag.org/content/301/5639/1510.abstract

  95. Danzl, J.G., Haller, E., Gustavsson, M., Mark, M.J., Hart, R., Bouloufa, N., Dulieu, O., Ritsch, H., Nägerl, H.-C.: Quantum gas of deeply bound ground state molecules. Science 321, 1062 (2008)

    Article  ADS  Google Scholar 

  96. Bartenstein, M., Altmeyer, A., Riedl, S., Jochim, S., Chin, C., Denschlag, J.H., Grimm, R.: Crossover from a molecular Bose-Einstein condensate to a degenerate Fermi gas. Phys. Rev. Lett. 92, 120401–1–4 (2004)

    Google Scholar 

  97. Kinast, J., Hemmer, S.L., Gehm, M.E., Turlapov, A., Thomas, J.E.: Evidence for superfluidity in a resonantly interacting Fermi gas. Phys. Rev. Lett. 92, 150402–1–4 (2004)

    Google Scholar 

  98. Dürr, S., Volz, T., Marte, A., Rempe, G.: Observation of molecules produced from a Bose-Einstein condensate. Phys. Rev. Lett. 92, 020406 (2004). doi:10.1103/PhysRevLett.92.020406. http://link.aps.org/doi/10.1103/PhysRevLett.92.020406

  99. Eagles, D.M.: Possible pairing without superconductivity at low carrier concentrations in bulk and thin-film superconducting semiconductors. Phys. Rev. 186, 456–463 (1969)

    Article  ADS  Google Scholar 

  100. Leggett, A.J.: Diatomic molecules and cooper pairs. In: Pekalski, A., Przystawa, R. (eds.) Modern Trends in the Theory of Condensed Matter. Springer, Berlin (1980)

    Google Scholar 

  101. Noziéres, P., Schmitt-Rink, S.: Bose condensation in an attractive Fermion gas: from weak to strong coupling superconductivity. J. Low Temp. Phys. 59, 195–211 (1985). doi:10.1007/BF00683774. http://dx.doi.org/10.1007/BF00683774 [ISSN 0022-2291]

  102. Chen, Q., Stajic, J., Tan, S., Levin, K.: Bcs-bec crossover: From high temperature superconductors to ultracold superfluids. Phys. Rep. 412(1), 1–88 (2005). doi:10.1016/j.physrep.2005.02.005. http://www.sciencedirect.com/science/article/pii/S0370157305001067 [ISSN 0370-1573]

  103. Adams, A., Carr, L.D., Schaefer, T, Steinberg, P., Thomas, J.E.: Strongly correlated quantum fluids: Ultracold quantum gases, quantum chromodynamic plasmas, and holographic duality (2012). http://arxiv.org/abs/1205.5180

  104. Winkler, K., Lang, F., Thalhammer, G., Straten, P.v.d., Grimm, R., Denschlag, J.H.: Coherent optical transfer of Feshbach molecules to a lower vibrational state. Phys. Rev. Lett. 98(4), 043201 (2007). doi:10.1103/PhysRevLett.98.043201

  105. Ospelkaus, S., Pe’er, A., Ni, K.K., Zirbel, J.J., Neyenhuis, B., Kotochigova, S., Julienne, P.S., Ye, J., Jin, D.S.: Ultracold dense gas of deeply bound heteronuclear molecules Nature Physics, 4, 622–626 (2008)

    Google Scholar 

  106. Ospelkaus, S., Ni, K.K., de Miranda, M.H.G., Pe’er, A., Nyenhuis, B., Wang, D., Kotochigova, S., Julienne, P.S., Jin, D.S., Ye, J.: Ultracold polar molecules near quantum degeneracy. Faraday Discuss. 142, 351–359 (2009)

    Article  ADS  Google Scholar 

  107. Danzl, J.G., Mark, M.J., Haller, E., Gustavsson, M., Hart, R., Aldegunde, J., Hutson, J.M., Nägerl, H.-C.: An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice. Nat. Phys. 6, 265–270 (2010)

    Article  Google Scholar 

  108. Ospelkaus, S., Ni, K.-K., Quéméner, G., Neyenhuis, B., Wang, D., deMiranda, M.H.G., Bohn, J.L., Ye, J., Jin, D.S.: Controlling the hyperfine state of rovibronic ground-state polar molecules. Phys. Rev. Lett. 104(3), 030402 (2010). doi:10.1103/PhysRevLett.104.030402

  109. Deiglmayr, J., Grochola, A., Repp, M., Mörtlbauer, K., Glück, C., Lange, J., Dulieu, O., Wester, R., Weidemüller, M.: Formation of ultracold polar molecules in the rovibrational ground state. Phys. Rev. Lett. 101(13), 133004 (2008). doi:10.1103/PhysRevLett.101.133004

    Article  ADS  Google Scholar 

  110. Cho, H.W., McCarron, D.J., Jenkin, D.L., Köppinger, M.P., Cornish, S.L.: A high phase-space density mixture of87Rb and133Cs: Towards ultracold heteronuclear molecules. Eur. Phys. J. D, 1–7. doi:10.1140/epjd/e2011-10716-1. http://dx.doi.org/10.1140/epjd/e2011-10716-1 [ISSN 1434-6060]

  111. Kotochigova, S., DeMille, D.: Electric-field-dependent dynamic polarizability and state-insensitive conditions for optical trapping of diatomic polar molecules. Phys. Rev. A 82, 063421 (2010). doi:10.1103/PhysRevA.82.063421. http://link.aps.org/doi/10.1103/PhysRevA.82.063421

  112. Aldegunde, J., Rivington, B.A., Żuchowski, P.S., Hutson, J.M.: Hyperfine energy levels of alkali-metal dimers: Ground-state polar molecules in electric and magnetic fields. Phys. Rev. A 78, 033434 (2008)

    Article  ADS  Google Scholar 

  113. Ran, H., Aldegunde, J., Hutson, J.M.: Hyperfine structure in the microwave spectra of ultracold polar molecules. New J. Phys. 12(4), 043015 (2010). http://stacks.iop.org/1367-2630/12/i=4/a=043015

  114. Ni, K.K., Ospelkaus, S., Wang, D., Quemener, G., Neyenhuis, B., de Miranda, M.H.G., Bohn, J.L., Ye, J., Jin, D.S.: Dipolar collisions of polar molecules in the quantum regime. Nature (London) 464, 1324 (2010)

    Article  ADS  Google Scholar 

  115. deMiranda, M.H.G., Chotia, A., Neyenhuis, B., Wang, D., Quemener, G., Ospelkaus, S., Bohn, J.L., Ye, J., Jin, D.S.: Controlling the quantum stereodynamics of ultracold bimolecular reactions. Nat. Phys. 7(6), 502–507 (2011). doi:10.1038/nphys1939. http://dx.doi.org/10.1038/nphys1939 [ISSN 1745-2473]

  116. Marinescu, M., You, L.: Controlling atom-atom interaction at ultralow temperatures by dc electric fields. Phys. Rev. Lett. 81, 4596–4599 (1998)

    Article  ADS  Google Scholar 

  117. Yi, S., You, L.: Trapped atomic condensates with anisotropic interactions. Phys. Rev. A 61, 041604 (2000). doi:10.1103/PhysRevA.61.041604. http://link.aps.org/doi/10.1103/PhysRevA.61.041604

  118. Deb, B., You, L.: Low-energy atomic collision with dipole interactions. Phys. Rev. A 64, 022717 (2001). doi:10.1103/PhysRevA.64.022717. http://link.aps.org/doi/10.1103/PhysRevA.64.022717

  119. Bortolotti, D.C.E., Ronen, S., Bohn, J.L., Blume, D.: Scattering length instability in dipolar Bose-Einstein condensates. Phys. Rev. Lett. 97, 160402 (2006). doi:10.1103/PhysRevLett.97.160402. http://link.aps.org/doi/10.1103/PhysRevLett.97.160402

  120. Ronen, S., Bortolotti, D.C.E., Blume, D., Bohn, J.L.: Dipolar Bose-Einstein condensates with dipole-dependent scattering length. Phys. Rev. A 74, 033611 (2006). doi:10.1103/PhysRevA.74.033611. http://link.aps.org/doi/10.1103/PhysRevA.74.033611

  121. Gorshkov, A.V., Manmana, S.R., Chen, G., Ye, J., Demler, E., Lukin, M.D., Rey, A.M.: Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011). doi:10.1103/PhysRevLett.107.115301. http://link.aps.org/doi/10.1103/PhysRevLett.107.115301

  122. Gorshkov, A.V., Manmana, S.R., Chen, G., Demler, E., Lukin, M.D., Rey, A.M.: Quantum magnetism with polar alkali-metal dimers. Phys. Rev. A 84, 033619 (2011). doi:10.1103/PhysRevA.84.033619. http://link.aps.org/doi/10.1103/PhysRevA.84.033619

  123. Wall, M.L., Carr, L.D.: Hyperfine molecular Hubbard Hamiltonian. Phys. Rev. A 82(1), 013611 (2010). doi:10.1103/PhysRevA.82.013611

    Article  ADS  Google Scholar 

  124. Mayle, M., Ruzic, B.P., Bohn, J.L.: Statistical aspects of ultracold resonant scattering. Phys. Rev. A 85, 062712 (2012). doi:10.1103/PhysRevA.85.062712. http://link.aps.org/doi/10.1103/PhysRevA.85.062712

  125. Ospelkaus, S., Ni, K.-K., Wang, D., deMiranda, M.H.G., Neyenhuis, B., Quéméner, G., Julienne, P.S., Bohn, J.L., Jin, D.S., Ye, J.: Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science 327(5967), 853–857 (2010). doi:10.1126/science.1184121. http://www.sciencemag.org/content/327/5967/853.abstract

  126. Chotia, A., Neyenhuis, B., Moses, S.A., Yan, B., Covey, J.P., Foss-Feig, M., Rey, A.M., Jin, D.S., Ye, J.: Long-lived dipolar molecules and Feshbach molecules in a 3D optical lattice. Phys. Rev. Lett. 108, 080405 (2012). doi:10.1103/PhysRevLett.108.080405. http://link.aps.org/doi/10.1103/PhysRevLett.108.080405

  127. Gribakin, G.F., Flambaumm, V.V.: Calculation of the scattering length in atomic collisions using the semiclassical approximation. Phys. Rev. A 48, 546–553 (1993). doi:10.1103/PhysRevA.48.546. http://link.aps.org/doi/10.1103/PhysRevA.48.546

  128. Aymar, M., Dulieu, O.: Calculation of accurate permanent dipole moments of the lowest \(^{1,3}\Sigma ^{+}\) states of heteronuclear alkali dimers using extended basis sets. J. Chem. Phys. 122(20) (2005). doi:10.1063/1.1903944 [ISSN 0021-9606]

  129. Croft, J.F.E., Wallis, A.O.G., Hutson, J.M., Julienne, P.S.: Multichannel quantum defect theory for cold molecular collisions. Phys. Rev. A 84, 042703 (2011). doi:10.1103/PhysRevA.84.042703. http://link.aps.org/doi/10.1103/PhysRevA.84.042703

  130. Idziaszek, Z., Quéméner, G., Bohn, J.L., Julienne, P.S.: Simple quantum model of ultracold polar molecule collisions. Phys. Rev. A 82, 020703 (2010). doi:10.1103/PhysRevA.82.020703. http://link.aps.org/doi/10.1103/PhysRevA.82.020703

  131. Julienne, P.S., Hanna, T.M., Idziaszek, Z.: Universal ultracold collision rates for polar molecules of two alkali-metal atoms. Phys. Chem. Chem. Phys. 13, 19114–19124 (2011). doi:10.1039/C1CP21270B. http://dx.doi.org/10.1039/C1CP21270B

  132. Idziaszek, Z., Julienne, P.S.: Universal rate constants for reactive collisions of ultracold molecules. Phys. Rev. Lett. 104, 113202 (2010). doi:10.1103/PhysRevLett.104.113202. http://link.aps.org/doi/10.1103/PhysRevLett.104.113202

  133. Micheli, A., Idziaszek, Z., Pupillo, G., Baranov, M.A., Zoller, P., Julienne, P.S.: Universal rates for reactive ultracold polar molecules in reduced dimensions. Phys. Rev. Lett. 105, 073202 (2010). doi:10.1103/PhysRevLett.105.073202. http://link.aps.org/doi/10.1103/PhysRevLett.105.073202

  134. Hanna, T.M., Tiesinga, E., Mitchell, W.F., Julienne, P.S.: Resonant control of polar molecules in individual sites of an optical lattice. Phys. Rev. A 85, 022703 (2012). doi:10.1103/PhysRevA.85.022703. http://link.aps.org/doi/10.1103/PhysRevA.85.022703

  135. Quéméner, G., Bohn, J.L.: Electric field suppression of ultracold confined chemical reactions. Phys. Rev. A 81, 060701 (2010). doi:10.1103/PhysRevA.81.060701. http://link.aps.org/doi/10.1103/PhysRevA.81.060701

  136. Quéméner, G., Bohn, J.L.: Strong dependence of ultracold chemical rates on electric dipole moments. Phys. Rev. A 81, 022702 (2010). doi:10.1103/PhysRevA.81.022702. http://link.aps.org/doi/10.1103/PhysRevA.81.022702

  137. Quéméner, G., Bohn, J.L., Petrov, A., Kotochigova, S.: Universalities in ultracold reactions of alkali-metal polar molecules. Phys. Rev. A 84, 062703 (2011). doi:10.1103/PhysRevA.84.062703. http://link.aps.org/doi/10.1103/PhysRevA.84.062703

  138. Syassen, N., Bauer, D.M., Lettner, M., Volz, T., Dietze, D., García-Ripoll, J.J., Cirac, J.I., Rempe, G., Dürr, S.: Strong dissipation inhibits losses and induces correlations in cold molecular gases. Science 320(5881), 1329–1331 (2008). doi:10.1126/science.1155309. http://www.sciencemag.org/content/320/5881/1329.abstract

  139. Schuch, N., Verstraete, F.: Computational complexity of interacting electrons and fundamental limitations of density functional theory. Nat. Phys. 5(10), 732–735 (2009). doi:10.1038/nphys1370. http://dx.doi.org/10.1038/nphys1370

  140. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins Studies in Mathematical Sciences. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  141. Davidson, E.R.: The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 17(1), 87–94 (1975). doi:10.1016/0021-9991(75)90065-0. http://www.sciencedirect.com/science/article/pii/0021999175900650 [ISSN 0021-9991]

  142. Feynman, R.P.: Atomic theory of the λ transition in helium. Phys. Rev. 91, 1291–1301 (1953). doi:10.1103/PhysRev.91.1291. http://link.aps.org/doi/10.1103/PhysRev.91.1291

  143. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  144. Evertz, H.G.: The loop algorithm. Adv. Phys. 52(1), 1–66 (2003). doi:10.1080/0001873021000049195. http://www.tandfonline.com/doi/abs/10.1080/0001873021000049195

  145. Prokof’ev, N., Svistunov, B., Tupitsyn, I.: Exact, complete, and universal continuous-time worldline Monte Carlo approach to the statistics of discrete quantum systems. J. Exp. Theor. Phys. 87, 310–321 (1998). doi:10.1134/1.558661. http://dx.doi.org/10.1134/1.558661 [ISSN 1063-7761]

  146. Troyer, M., Wiese, U.-J.: Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett. 94, 170201 (2005). doi:10.1103/PhysRevLett.94.170201. http://link.aps.org/doi/10.1103/PhysRevLett.94.170201

  147. Grimm, R.C., Storer, R.G.: Monte-Carlo solution of Schrödinger’s equation. Chin. J. Comput. Phys. 7(1), 134–156 (1971). doi:10.1016/0021-9991(71)90054-4. http://www.sciencedirect.com/science/article/pii/0021999171900544 [ISSN 0021-9991]

  148. McMillan, W.L.: Ground state of liquid He4. Phys. Rev. 138, A442–A451 (1965). doi:10.1103/PhysRev.138.A442. http://link.aps.org/doi/10.1103/PhysRev.138.A442

  149. Prokof’ev, N.V., Svistunov, B.V.: Polaron problem by diagrammatic quantum Monte Carlo. Phys. Rev. Lett. 81, 2514–2517 (1998). doi:10.1103/PhysRevLett.81.2514. http://link.aps.org/doi/10.1103/PhysRevLett.81.2514

  150. Prokof’ev, N., Svistunov, B.: Bold diagrammatic Monte Carlo technique: When the sign problem is welcome. Phys. Rev. Lett. 99, 250201 (2007). doi:10.1103/PhysRevLett.99.250201. http://link.aps.org/doi/10.1103/PhysRevLett.99.250201

  151. Prokof’ev, N.V., Svistunov, B.V.: Bold diagrammatic Monte Carlo: A generic sign-problem tolerant technique for polaron models and possibly interacting many-body problems. Phys. Rev. B 77, 125101 (2008). doi:10.1103/PhysRevB.77.125101. http://link.aps.org/doi/10.1103/PhysRevB.77.125101

  152. VanHoucke, K., Werner, F., Kozik, E., Prokof/’ev, N., Svistunov, B., Ku, M.J.H., Sommer, A.T., Cheuk, L.W., Schirotzek, A., Zwierlein, M.W.: Feynman diagrams versus Fermi-gas Feynman emulator. Nat. Phys. 8(5), 366–370 (2012) doi:10.1038/nphys2273. http://dx.doi.org/10.1038/nphys2273 [ISSN 1745-2473]

  153. Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems. McGraw-Hill, New York (1971)

    Google Scholar 

  154. Schiró, M.: Real-time dynamics in quantum impurity models with diagrammatic Monte Carlo. Phys. Rev. B 81, 085126 (2010). doi:10.1103/PhysRevB.81.085126. http://link.aps.org/doi/10.1103/PhysRevB.81.085126

  155. Metzner, W., Vollhardt, D.: Correlated lattice fermions in d =  dimensions. Phys. Rev. Lett. 62, 324–327 (1989). doi:10.1103/PhysRevLett.62.324. http://link.aps.org/doi/10.1103/PhysRevLett.62.324

  156. Georges, A., Kotliar, G.: Hubbard model in infinite dimensions. Phys. Rev. B 45, 6479–6483 (1992). doi:10.1103/PhysRevB.45.6479. http://link.aps.org/doi/10.1103/PhysRvB.45.6479

  157. Georges, A., Kotliar, G., Krauth, W., Rozenberg, M.J.: Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996). doi:10.1103/RevModPhys.68.13. http://link.aps.org/doi/10.1103/RevModPhys.68.13

  158. Kotliar, G., Savrasov, S.Y., Haule, K., Oudovenko, V.S., Parcollet, O., Marianetti, C.A.: Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78, 865–951 (2006). doi:10.1103/RevModPhys.78.865. http://link.aps.org/doi/10.1103/RevModPhys.78.865

  159. Titvinidze, I., Snoek, M., Hofstetter, W.: Generalized dynamical mean-field theory for Bose-Fermi mixtures in optical lattices. Phys. Rev. B 79, 144506 (2009)

    Article  ADS  Google Scholar 

  160. Hu, W.-J., Tong, N.-H.: Dynamical mean-field theory for the Bose-Hubbard model. Phys. Rev. B 80, 245110 (2009). doi:10.1103/PhysRevB.80.245110. http://link.aps.org/doi/10.1103/PhysRevB.80.245110

  161. Feiguin, A.E., White, S.R.: Finite-temperature density matrix renormalization using an enlarged Hilbert space. Phys. Rev. B 72(22), 220401 (2005). doi:10.1103/PhysRevB.72.220401

    Article  ADS  Google Scholar 

  162. White, S.R.: Minimally entangled typical quantum states at finite temperature. Phys. Rev. Lett. 102(19), 190601 (2009). doi:10.1103/PhysRevLett.102.190601

    Article  ADS  MathSciNet  Google Scholar 

  163. Stoudenmire, E.M., White, S.R.: Minimally entangled typical thermal state algorithms. New J. Phys. 12(5), 055026 (2010). http://stacks.iop.org/1367-2630/12/i=5/a=055026

  164. Wall, M.L., Carr, L.D.: Finite temperature matrix product state algorithms and applications. In: Davis, M., Gardiner, S., Nygaard, N., Proukakis, N., Szymanska, M. (eds.) Chapter in Non-equilibrium Quantum Gases at Finite Temperatures. World Scientific, Singapore (2011). e-print http://arxiv.org/abs/1008.4303

  165. Schachenmayer, J., Lesanovsky, I., Micheli, A., Daley, A.J.: Dynamical crystal creation with polar molecules or Rydberg atoms in optical lattices. New J. Phys. 12(10), 103044 (2010). http://stacks.iop.org/1367-2630/12/i=10/a=103044

  166. McCulloch, I.P.: From density-matrix renormalization group to matrix product states. J. Stat. Mech. 2007(10), P10014 (2007). http://stacks.iop.org/1742-5468/2007/i=10/a=P10014

  167. Crosswhite, G.M., Doherty, A.C., Vidal, G.: Applying matrix product operators to model systems with long-range interactions. Phys. Rev. B 78, 035116 (2008). doi:10.1103/PhysRevB.78.035116. http://link.aps.org/doi/10.1103/PhysRevB.78.035116

  168. Pirvu, B., Murg, V., Cirac, J.I., Verstraete, F.: Matrix product operator representations. New J. Phys. 12(2), 025012 (2010). http://stacks.iop.org/1367-2630/12/i=2/a=025012

  169. Dalmonte, M., Pupillo, G., Zoller, P.: One-dimensional quantum liquids with power-law interactions: The luttinger staircase. Phys. Rev. Lett. 105, 140401 (2010). doi:10.1103/PhysRevLett.105.140401. http://link.aps.org/doi/10.1103/PhysRevLett.105.140401

  170. Capogrosso-Sansone, B., Trefzger, C., Lewenstein, M., Zoller, P., Pupillo, G.: Quantum phases of cold polar molecules in 2D optical lattices. Phys. Rev. Lett. 104, 125301 (2010)

    Article  ADS  Google Scholar 

  171. Mermin, N.D., Wagner, H.: Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966). doi:10.1103/PhysRevLett.17.1133. http://link.aps.org/doi/10.1103/PhysRevLett.17.1133

  172. Hohenberg, P.C.: Existence of long-range order in one and two dimensions. Phys. Rev. 158, 383–386 (1967). doi:10.1103/PhysRev.158.383. http://link.aps.org/doi/10.1103/PhysRev.158.383

  173. Griesmaier, A., Werner, J., Hensler, S., Stuhler, J., Pfau, T.: Bose-Einstein condensation of chromium. Phys. Rev. Lett. 94, 160401–1–4 (2005)

    Google Scholar 

  174. Beaufils, Q., Chicireanu, R., Zanon, T., Laburthe-Tolra, B., Maréchal, E., Vernac, L., Keller, J.-C., Gorceix, O.: All-optical production of chromium Bose-Einstein condensates. Phys. Rev. A 77, 061601 (2008). doi:10.1103/PhysRevA.77.061601. http://link.aps.org/doi/10.1103/PhysRevA.77.061601

  175. Lu, M., Burdick, N.Q., Youn, S.H., Lev, B.L.: Strongly dipolar Bose-Einstein condensate of dysprosium. Phys. Rev. Lett. 107, 190401 (2011). doi:10.1103/PhysRevLett.107.190401. http://link.aps.org/doi/10.1103/PhysRevLett.107.190401

  176. Aikawa, K., Frisch, A., Mark, M., Baier, S., Rietzler, A., Grimm, R., Ferlaino, F.: Bose-Einstein condensation of erbium. Phys. Rev. Lett. 108, 210401 (2012). doi:10.1103/PhysRevLett.108.210401. http://link.aps.org/doi/10.1103/PhysRevLett.108.210401

  177. Lu, M., Burdick, N.Q., Lev, B.L.: Quantum degenerate dipolar Fermi gas. Phys. Rev. Lett. 108, 215301 (2012). doi:10.1103/PhysRevLett.108.215301. http://link.aps.org/doi/10.1103/PhysRevLett.108.215301

  178. Lahaye, T., Metz, J., Fröhlich, B., Koch, T., Meister, M., Griesmaier, A., Pfau, T., Saito, H., Kawaguchi, Y., Ueda, M.: d-wave collapse and explosion of a dipolar Bose-Einstein condensate. Phys. Rev. Lett. 101, 080401 (2008)

    Google Scholar 

  179. Baranov, M.A.: Theoretical progress in many-body physics with ultracold dipolar gases. Phys. Rep. 464(3), 71–111 (2008)

    Article  ADS  Google Scholar 

  180. Lahaye, T., Menotti, C., Santos, L., Lewenstein, M., Pfau, T.: The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72(12), 126401 (2009). http://stacks.iop.org/0034-4885/72/i=12/a=126401

  181. Santos, L., Shlyapnikov, G.V., Zoller, P., Lewenstein, M.: Bose-Einstein condensation in trapped dipolar gases. Phys. Rev. Lett. 85, 1791–1794 (2000). Erratum: Santos, L., Shlyapnikov, G.V., Zoller, P., Lewenstein, M.: Phys. Rev. Lett. 85, 1791 (2000)

    Google Scholar 

  182. Yi, S., You, L., Pu, H.: Quantum phases of dipolar spinor condensates. Phys. Rev. Lett. 93, 040403–1–4 (2004)

    Google Scholar 

  183. Sinha, S., Santos, L.: Cold dipolar gases in quasi-one-dimensional geometries. Phys. Rev. Lett. 99, 140406 (2007)

    Article  ADS  Google Scholar 

  184. Ronen, S., Bortolotti, D.C.E., Bohn, J.L.: Radial and angular rotons in trapped dipolar gases. Phys. Rev. Lett. 98, 030406 (2007) doi:10.1103/PhysRevLett.98.030406. http://link.aps.org/doi/10.1103/PhysRevLett.98.030406

  185. Kanjilal, K., Bohn, J.L., Blume, D.: Pseudopotential treatment of two aligned dipoles under external harmonic confinement. Phys. Rev. A 75, 052705 (2007). doi:10.1103/PhysRevA.75.052705. http://link.aps.org/doi/10.1103/PhysRevA.75.052705

  186. Wilson, R.M., Ronen, S., Bohn, J.L., Pu, H.: Manifestations of the roton mode in dipolar Bose-Einstein condensates. Phys. Rev. Lett. 100, 245302 (2008). doi:10.1103/PhysRevLett.100.245302. http://link.aps.org/doi/10.1103/PhysRevLett.100.245302

  187. Menotti, C., Trefzger, C., Lewenstein, M.: Metastable states of a gas of dipolar bosons in a 2D optical lattice. Phys. Rev. Lett. 98, 235301 (2007)

    Article  ADS  Google Scholar 

  188. Trefzger, C., Menotti, C., Lewenstein, M.: Ultracold dipolar gas in an optical lattice: The fate of metastable states. Phys. Rev. A 78, 043604 (2008). doi:10.1103/PhysRevA.78.043604. http://link.aps.org/doi/10.1103/PhysRevA.78.043604

  189. Goral, K., Santos, L., Lewenstein, M.: Quantum phases of dipolar bosons in optical lattices. Phys. Rev. Lett. 88, 170406–1–4 (2002)

    Google Scholar 

  190. Damski, B., Santos, L., Tiemann, E., Lewenstein, M., Kotochigova, S., Julienne, P., Zoller, P.: Creation of a dipolar superfluid in optical lattices. Phys. Rev. Lett. 90, 110401–1–4 (2003)

    Google Scholar 

  191. Danshita, I., de Melo, C.A.R.S.: Stability of superfluid and supersolid phases of dipolar bosons in optical lattices. Phys. Rev. Lett. 103, 225301 (2009). doi:10.1103/PhysRevLett.103.225301. http://link.aps.org/doi/10.1103/PhysRevLett.103.225301

  192. Pollet, L., Picon, J.D., Büchler, H.P., Troyer, M.: Supersolid phase with cold polar molecules on a triangular lattice. Phys. Rev. Lett. 104, 125302 (2010). doi:10.1103/PhysRevLett.104.125302. http://link.aps.org/doi/10.1103/PhysRevLett.104.125302

  193. Wilson, R.M., Bohn, J.L.: Emergent structure in a dipolar Bose gas in a one-dimensional lattice. Phys. Rev. A 83, 023623 (2011). doi:10.1103/PhysRevA.83.023623. http://link.aps.org/doi/10.1103/PhysRevA.83.023623

  194. Boninsegni M., Prokof’ev, N.V.: Colloquium. Supersolids: What and where are they? Rev. Mod. Phys. 84, 759–776 (2012) doi:10.1103/RevModPhys.84.759. http://link.aps.org/doi/10.1103/RevModPhys.84.759

  195. Olshanii, M.: Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett. 81, 938–941 (1998)

    Article  ADS  Google Scholar 

  196. DeMille, D.: Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002)

    Article  ADS  Google Scholar 

  197. Micheli, A., Brennen, G.K., Zoller, P.: A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2(5), 341–347 (2006). doi:10.1038/nphys287. http://dx.doi.org/10.1038/nphys287 [ISSN 1745-2473]

  198. Brennen, G.K., Micheli, A., Zoller, P.: Designing spin-1 lattice models using polar molecules. New J. Phys. 9, 138 (2007)

    Article  ADS  Google Scholar 

  199. Herrera, F., Krems, R.V.: Tunable Holstein model with cold polar molecules. Phys. Rev. A 84, 051401 (2011). doi:10.1103/PhysRevA.84.051401. http://link.aps.org/doi/10.1103/PhysRevA.84.051401

  200. Pérez-Ríos, J., Herrera, F., Krems, R.V.: External field control of collective spin excitations in an optical lattice of \(^{2}\Sigma \) molecules. New J. Phys. 12(10), 103007 (2010). http://stacks.iop.org/1367-2630/12/i=10/a=103007

  201. Herrera, F., Litinskaya, M., Krems, R.V.: Tunable disorder in a crystal of cold polar molecules. Phys. Rev. A 82, 033428 (2010). doi:10.1103/PhysRevA.82.033428. http://link.aps.org/doi/10.1103/PhysRevA.82.033428

  202. Quintanilla, J., Carr, S.T., Betouras, J.J.: Metanematic, smectic, and crystalline phases of dipolar fermions in an optical lattice. Phys. Rev. A 79, 031601 (2009). doi:10.1103/PhysRevA.79.031601. http://link.aps.org/doi/10.1103/PhysRevA.79.031601

  203. Lin, C., Zhao, E., Liu, W.V.: Liquid crystal phases of ultracold dipolar fermions on a lattice. Phys. Rev. B 81, 045115 (2010). doi:10.1103/PhysRevB.81.045115. http://link.aps.org/doi/10.1103/PhysRevB.81.045115

  204. DallaTorre, E.G., Berg, E., Altman, E.: Hidden order in 1D bose insulators. Phys. Rev. Lett. 97, 260401 (2006). doi:10.1103/PhysRevLett.97.260401. http://link.aps.org/doi/10.1103/PhysRevLett.97.260401

  205. Kestner, J.P., Wang, B., Sau, J.D., DasSarma, S.: Prediction of a gapless topological Haldane liquid phase in a one-dimensional cold polar molecular lattice. Phys. Rev. B 83, 174409 (2011). doi:10.1103/PhysRevB.83.174409. http://link.aps.org/doi/10.1103/PhysRevB.83.174409

  206. Pupillo, G., Micheli, A., Buchler, H.P., Zoller, P.: Cold Molecules: Creation and Applications, Chap. 12. Taylor & Francis, Boca Raton (2009)

    Google Scholar 

  207. Gorshkov, A.V., Rabl, P., Pupillo, G., Micheli, A., Zoller, P., Lukin, M.D., Büchler, H.P.: Suppression of inelastic collisions between polar molecules with a repulsive shield. Phys. Rev. Lett. 101, 073201 (2008)

    Article  ADS  Google Scholar 

  208. Micheli, A., Pupillo, G., Büchler, H.P., Zoller, P.: Cold polar molecules in two-dimensional traps: Tailoring interactions with external fields for novel quantum phases. Phys. Rev. A 76, 043604 (2007)

    Article  ADS  Google Scholar 

  209. Pupillo, G., Griessner, A., Micheli, A., Ortner, M., Wang, D.-W., Zoller, P.: Cold atoms and molecules in self-assembled dipolar lattices. Phys. Rev. Lett. 100, 050402 (2008)

    Article  ADS  Google Scholar 

  210. Ortner, M., Micheli, A., Pupillo, G., Zoller, P.: Quantum simulations of extended Hubbard models with dipolar crystals. New J. Phys. 11, 055045 (2009)

    Article  ADS  Google Scholar 

  211. Büchler, H.P., Micheli, A., Zoller, P.: Three-body interactions with cold polar molecules. Nat. Phys. 3, 726–731 (2007)

    Article  Google Scholar 

  212. Schmidt, K.P., Dorier, J., Läuchli, A.M.: Solids and supersolids of three-body interacting polar molecules on an optical lattice. Phys. Rev. Lett. 101, 150405 (2008). doi:10.1103/PhysRevLett.101.150405. http://link.aps.org/doi/10.1103/PhysRevLett.101.150405

  213. Trefzger, C., Menotti, C., Lewenstein, M.: Pair-supersolid phase in a bilayer system of dipolar lattice bosons. Phys. Rev. Lett. 103, 035304 (2009). doi:10.1103/PhysRevLett.103.035304. http://link.aps.org/doi/10.1103/PhysRevLett.103.035304

  214. Potter, A.C., Berg, E., Wang, D.-W., Halperin, B.I., Demler, E.: Superfluidity and dimerization in a multilayered system of fermionic polar molecules. Phys. Rev. Lett. 105, 220406 (2010). doi:10.1103/PhysRevLett.105.220406. http://link.aps.org/doi/10.1103/PhysRevLett.105.220406

  215. Łakomy, K., Nath, R., Santos, L.: Spontaneous crystallization and filamentation of solitons in dipolar condensates. Phys. Rev. A 85, 033618 (2012). doi:10.1103/PhysRevA.85.033618. http://link.aps.org/doi/10.1103/PhysRevA.85.033618

  216. Barnett, R., Petrov, D., Lukin, M., Demler, E.: Quantum magnetism with multicomponent dipolar molecules in an optical lattice. Phys. Rev. Lett. 96, 190401 (2006)

    Article  ADS  Google Scholar 

  217. Timmermans, E., Tommasini, P., Hussein, M., Kerman, A.: Feshbach resonances in atomic Bose-Einstein condensates. Phys. Rep. 315(1-3), 199–230 (1999). doi:DOI:10.1016/S0370-1573(99)00025-3. http://www.sciencedirect.com/science/article/pii/S0370157399000253 [ISSN 0370-1573]

  218. Ranninger, J., Robaszkiewicz, S.: Superconductivity of locally paired electrons. Phys. B 135, 468 (1985)

    Article  Google Scholar 

  219. Friedberg, R., Lee, T.D.: Gap energy and long-range order in the boson-fermion model of superconductivity. Phys. Rev. B 40(10), 6745–6762 (1989). doi:10.1103/PhysRevB.40.6745

    Article  ADS  MathSciNet  Google Scholar 

  220. Ranninger, J., Robin, J.M.: The boson-fermion model of high-T c superconductivity doping dependence. Phys. C 253, 279–291 (1995)

    Article  ADS  Google Scholar 

  221. Yang, K.-Y., Kozik, E., Wang, X., Troyer, M.: Diagrammatic quantum Monte Carlo solution of the two-dimensional cooperon-fermion model. Phys. Rev. B 83, 214516 (2011). doi:10.1103/PhysRevB.83.214516. http://link.aps.org/doi/10.1103/PhysRevB.83.214516

  222. Holland, M., Kokkelmans, S.J.J.M.F., Chiofalo, M.L., Walser, R.: Resonance superfluidity in a quantum degenerate Fermi gas. Phys. Rev. Lett. 87, 120406–1–4 (2001)

    Google Scholar 

  223. Milstein, J.N., Kokkelmans, S.J.J.M.F., Holland, M.J.: Resonance theory of the crossover from Bardeen-Cooper-Schrieffer superfluidity to Bose-Einstein condensation in a dilute Fermi gas. Phys. Rev. A 66, 043604–1–6 (2002)

    Google Scholar 

  224. Diener, R.B., Ho, T.-L.: Fermions in optical lattices swept across Feshbach resonances. Phys. Rev. Lett. 96(1), 010402 (2006). doi:10.1103/PhysRevLett.96.010402

    Article  ADS  Google Scholar 

  225. Dickerscheid, D.B.M., AlKhawaja, U., van Oosten, D., Stoof, H.T.C.: Feshbach resonances in an optical lattice. Phys. Rev. A 71, 043604 (2005). doi:10.1103/PhysRevA.71.043604. http://link.aps.org/doi/10.1103/PhysRevA.71.043604

  226. Duan, L.-M.: Effective Hamiltonian for fermions in an optical lattice across a Feshbach resonance. Phys. Rev. Lett. 95(24), 243202 (2005)

    Article  ADS  Google Scholar 

  227. Duan, L.-M.: General Hubbard model for strongly interacting fermions in an optical lattice and its phase detection. EPL 81(2), 20001 (2008) http://stacks.iop.org/0295-5075/81/i=2/a=20001

  228. Kestner, J.P., Duan, L.-M.: Effective single-band models for strongly interacting fermions in an optical lattice. Phys. Rev. A 81(4), 043618 (2010) doi:10.1103/PhysRevA.81.043618

    Article  ADS  Google Scholar 

  229. Büchler, H.P.: Microscopic derivation of Hubbard parameters for cold atomic gases. Phys. Rev. Lett. 104(9), 090402 (2010). doi:10.1103/PhysRevLett.104.090402

    Article  Google Scholar 

  230. von Stecher, J., Gurarie, V., Radzihovsky, L., Rey, A.M.: Lattice-induced resonances in one-dimensional bosonic systems. Phys. Rev. Lett. 106(23), 235301 (2011). doi:10.1103/PhysRevLett.106.235301

    Article  ADS  Google Scholar 

  231. Algorithms and libraries for physics simulations (2012). http://alps.comp-phys.org

  232. Albuquerque, A.F., Alet, F., Corboz, P., Dayal, P., Feiguin, A., Fuchs, S., Gamper, L., Gull, E., Gurtler, S., Honecker, A., Igarashi, R., Korner, M., Kozhevnikov, A., Lauchli, A., Manmana, S.R., Matsumoto, M., McCulloch, I.P., Michel, F., Noack, R.M., Pawlowski, G., Pollet, L., Pruschke, T., Schollwöck, U., Todo, S., Trebst, S., Troyer, M., Werner, P., Wessel, S.: The ALPS project release 1.3: Open-source software for strongly correlated systems. J. Magn. Magn. Mater. 310, 1187–1193 (2007)

    Google Scholar 

  233. Bauer, B., Carr, L.D., Evertz, H.G., Feiguin, A., Freire, J., Fuchs, S., Gamper, L., Gukelberger, J., Gull, E., Guertler, S., Hehn, A., Igarashi, R., Isakov, S.V., Koop, D., Ma, P.N., Mates, P., Matsuo, H., Parcollet, O., Pawłowski, G., Picon, J.D., Pollet, L., Santos, E., Scarola, V.W., Schollwöck, U., Silva, C., Surer, B., Todo, S., Trebst, S., Troyer, M., Wall, M.L., Werner, P., Wessel, S.: The ALPS project release 2.0: Open source software for strongly correlated systems. J. Stat. Mech. 2011(05), P05001 (2011). http://stacks.iop.org/1742-5468/2011/i=05/a=P05001

  234. Powder with power open source time-dependent DMRG code (2012). http://www.qti.sns.it/dmrg/phome.html

  235. DMRG++ open source DMRG code (2012). http://www.ornl.gov/gz1/dmrgPlusPlus/

  236. Open source time-evolving block decimation (2010). http://physics.mines.edu/downloads/software/tebd/

  237. Esslinger, T.: Fermi-Hubbard physics with atoms in an optical lattice. Ann. Rev. Condens. Matter Phys. 1(1), 129–152 (2010). doi:10.1146/annurev-conmatphys-070909-104059. http://www.annualreviews.org/doi/abs/10.1146/annurev-conmatphys-070909-104059

  238. Open source TEBD SourceForge repository (2014). http://sourceforge.net/projects/opentebd/

  239. Open source MPS SourceForge repository (2014). http://sourceforge.net/projects/openmps/

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wall, M.L. (2015). General Introduction. In: Quantum Many-Body Physics of Ultracold Molecules in Optical Lattices. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-14252-4_1

Download citation

Publish with us

Policies and ethics