Skip to main content

Telemetry-Based Search Window Correction for Airborne Tracking

  • Conference paper
Book cover Advances in Visual Computing (ISVC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8887))

Included in the following conference series:

Abstract

Tracking from airborne cameras is very challenging, since most assumptions made for fixed cameras do not hold. Therefore, compensation of platform ego-motion is seen as a necessary pre-processing step. Most existing methods perform image registration or matching, which involves costly image transformations, and have a restricted operational range. In this paper, a novel ego-motion compensation approach is presented, that transforms the local search window of the visual tracker. This is much more computationally efficient, and can be applied regardless of the amount of texture in the background. Experiments with ground truth and tracker output data are conducted and show the validity of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Turner, D., Lucieer, A., Watson, C.: An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (uav) imagery, based on structure from motion (SfM) point clouds. Remote Sensing 4, 1392–1410 (2012)

    Article  Google Scholar 

  2. Shastry, A., Schowengerdt, R.: Airborne video registration and traffic-flow parameter estimation. IEEE Transactions on Intelligent Transportation Systems 6, 391–405 (2005)

    Article  Google Scholar 

  3. Andriluka, M., Schnitzspan, P., Meyer, J., Kohlbrecher, S., Petersen, K., Von Stryk, O., Roth, S., Schiele, B.: Vision based victim detection from unmanned aerial vehicles. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1740–1747 (2010)

    Google Scholar 

  4. Sharp, C., Shakernia, O., Sastry, S.: A vision system for landing an unmanned aerial vehicle. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2001, vol. 2, pp. 1720–1727 (2001)

    Google Scholar 

  5. Reinartz, P., Lachaise, M., Schmeer, E., Krauss, T., Runge, H.: Traffic monitoring with serial images from airborne cameras. ISPRS Journal of Photogrammetry and Remote Sensing 61, 149–158 (2006)

    Article  Google Scholar 

  6. Hummel, G., Kovács, L., Stütz, P., Szirányi, T.: Data Simulation and Testing of Visual Algorithms in Synthetic Environments for Security Sensor Networks. In: Aschenbruck, N., Martini, P., Meier, M., Tölle, J. (eds.) Future Security. CCIS, vol. 318, pp. 212–215. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Remagnino, P., Brand, P., Mohr, R.: Correlation techniques in adaptive template matching with uncalibrated cameras, vol. 2356, pp. 252–263 (1995)

    Google Scholar 

  8. Yuan, C., Recktenwald, F., Mallot, H.: Visual steering of uav in unknown environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 3906–3911 (2009)

    Google Scholar 

  9. Plinval, H., Morin, P., Mouyon, P., Hamel, T.: Visual servoing for underactuated vtol uavs: a linear, homography-based framework. In: International Journal of Robust and Nonlinear Control, pp. 1–24 (2013)

    Google Scholar 

  10. Nemra, A., Aouf, N.: Robust feature extraction and correspondence for uav map building. In: 17th Mediterranean Conference on Control and Automation, MED 2009, pp. 922–927 (2009)

    Google Scholar 

  11. Caballero, F., Merino, L., Ferruz, J., Ollero, A.: Unmanned Aerial Vehicle Localization Based on Monocular Vision and Online Mosaicking. Journal of Intelligent and Robotic Systems 55, 323–343 (2009)

    Article  MATH  Google Scholar 

  12. Heredia, G., Caballero, F., Maza, I., Merino, L., Viguria, A., Ollero, A.: Multi-unmanned aerial vehicle (uav) cooperative fault detection employing differential global positioning (dgps), inertial and vision sensors. Sensors 9, 7566–7579 (2009)

    Article  Google Scholar 

  13. Zhang, S.: Object tracking in unmanned aerial vehicle (uav) videos using a combined approach. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2005, vol. 2, pp. 681–684 (2005)

    Google Scholar 

  14. Barber, D., Redding, J., McLain, T., Beard, R., Taylor, C.: Vision-based target geo-location using a fixed-wing miniature air vehicle. Journal of Intelligent and Robotic Systems 47, 361–382 (2006)

    Article  Google Scholar 

  15. Dobrokhodov, V., Kaminer, I., Jones, K., Ghabcheloo, R.: Vision-based tracking and motion estimation for moving targets using small uavs. In: American Control Conference, pp. 1428–1433 (2006)

    Google Scholar 

  16. Teutsch, M., Kruger, W.: Detection, Segmentation, and Tracking of Moving Objects in UAV Videos. In: 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance, pp. 313–318 (2012)

    Google Scholar 

  17. Caballero, F., Merino, L., Ferruz, J., Ollero, A.: Improving vision-based planar motion estimation for unmanned aerial vehicles through online mosaicing. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 2860–2865 (2006)

    Google Scholar 

  18. Russ, M., Schmitt, M., Hellert, C., Stütz, P.: Airborne sensor and perception management: Experiments and Results for surveillance UAS. In: AIAA Infotech@Aerospace (I@A) Conference, pp. 1–16 (2013)

    Google Scholar 

  19. Böhm, F., Schulte, A.: UAV Autonomy Research - Challenges and advantages of a fully distributed system architecture. In: International Telemetering Conference, ITC 2012, pp. 1–10 (2012)

    Google Scholar 

  20. Tuzel, O., Porikli, F., Meer, P.: Region covariance: A fast descriptor for detection and classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 589–600. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Porikli, F., Tuzel, O., Meer, P.: Covariance tracking using model update based on lie algebra. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 728–735. IEEE (2006)

    Google Scholar 

  22. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. International Journal of Computer Vision 88, 303–338 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Climent-Pérez, P., Lazaridis, G., Hummel, G., Russ, M., Monekosso, D.N., Remagnino, P. (2014). Telemetry-Based Search Window Correction for Airborne Tracking. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2014. Lecture Notes in Computer Science, vol 8887. Springer, Cham. https://doi.org/10.1007/978-3-319-14249-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14249-4_43

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14248-7

  • Online ISBN: 978-3-319-14249-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics