Skip to main content

Video Coding Basic Principle

  • Chapter
  • First Online:

Abstract

This chapter gives an overview of basic video coding principles. It consists of five parts. The first part provides the concept of color spaces and the conversion among typical color spaces. In the second part, we describe the typical video formats used in video coding. The third part introduces the basic coding principle and the component of coding tools. The fourth part talks about the quality assessment of the videos briefly, and the last part concludes this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmed N, Natarajan T, Rao KR (1974) Discrete cosine transform. IEEE Trans Comput 100(1):90–93

    Article  MathSciNet  Google Scholar 

  • Andrews H, Pratt W (1968) Fourier transform coding of images. In: Proceedings of Hawaii international conference system sciences, pp 677–679

    Google Scholar 

  • Au J (2002) Complexity reduction of CAVLC: ISO/IEC MPEG ITU-T VCEG. JVT-D034

    Google Scholar 

  • Bjontegaard G (1997) Coding improvement by using 44 blocks for motion vectors and transform:ITU-T VCEG. Doc Q15-C-23

    Google Scholar 

  • Bjontegaard G (1998) Response to call for proposals for H.26l. ITU-T/Study Group 16/Video Coding Experts Group, document Q15-F-11

    Google Scholar 

  • Bjontegaard LK G (2002) Context-adaptive VLC (CVLC) coding of coefficients: ISO/IEC MPEG ITU-T VCEG. JVT-C028

    Google Scholar 

  • BT500-13 IR (2012) Methodology for the subjective assessment of the quality of television pictures. ITU

    Google Scholar 

  • BT601-5 IR (1995) Studio encoding parameters of digital television for standard 4:3 and wide-screen 16:9 aspect ratios. ITU

    Google Scholar 

  • Chen WH (1973) Slant transform image coding. Technical report, DTIC Document

    Google Scholar 

  • Chen Q, Zheng Y, Yin P, Lu X, Solé J, Xu Q, Francois E, Wu D (2011) Classified quadtree-based adaptive loop filter. In: 2011 IEEE international conference on multimedia and expo (ICME). IEEE, pp 1–6

    Google Scholar 

  • Cutler CC (1950) Differential quantization of communication signals

    Google Scholar 

  • Enomoto H, Shibata K (1965) Features of Hadamard transformed television signal. In: National conference IECE in Japan, p 881

    Google Scholar 

  • Flierl M, Girod B (2003) Generalized b pictures and the draft H. 264/AVC video-compression standard. IEEE Trans Circuits Syst Video Technol 13(7):587–597

    Article  Google Scholar 

  • Fu CM, Alshina E, Alshin A, Huang YW, Chen CY, Tsai CY, Hsu CW, Lei SM, Park JH, Han WJ (2012) Sample adaptive offset in the hevc standard. IEEE Trans Circuits Syst Video Technol 22(12):1755–1764

    Article  Google Scholar 

  • Golomb S (1966) Run-length encodings. IEEE Trans Inf Theory 12(3):399–401

    Article  MATH  MathSciNet  Google Scholar 

  • Gonzales C (1989) DCT coding of motion sequences including arithmetic coder: ISO/IEC JCT1/SC2/WP8. 89/187

    Google Scholar 

  • Grgić M, Zovko-Cihlar B, Bauer S (1997) Coding of audio-visual objects. In: 39th international symposium electronics in Marine-ELMAR 97

    Google Scholar 

  • H263 (1998) Video coding for low bitrate communications: Version 2. ITU-T, ITU-T Recom-mendation H263

    Google Scholar 

  • Harrison C (1952) Experiments with linear prediction in television. Bell Syst Tech J 31(4):764–783

    Article  Google Scholar 

  • Huffman DA et al (1952) A method for the construction of minimum redundancy codes. Proc IRE 40(9):1098–1101

    Article  Google Scholar 

  • Karadimitriou K, Tyler JM (1997) Min-max compression methods for medical image databases. ACM SIGMOD Rec 26(1):47–52

    Article  Google Scholar 

  • Karadimitriou K, Tyler JM (1998) The centroid method for compressing sets of similar images. Pattern Recognit Lett 19(7):585–593

    Article  Google Scholar 

  • Malvar HS, Hallapuro A, Karczewicz M, Kerofsky L (2003) Low-complexity transform and quantization in H. 264/AVC. IEEE Trans Circuits Syst Video Technol 13(7):598–603

    Article  Google Scholar 

  • Marpe D, Schwarz H, Wiegand T (2003) Context-based adaptive binary arithmetic coding in the H. 264/AVC video compression standard. IEEE Trans Circuits Syst Video Technol 13(7):620–636

    Article  Google Scholar 

  • MPEG2 (1994) Generic coding of moving pictures and associated audio information c MPEG2 part 2. video ISO/IEC 13818-2

    Google Scholar 

  • MPEG4 (1999) Coding of audio-visual objects c part 2. visual ISO/IEC 14496-2 (MPEG-4 visual version 1)

    Google Scholar 

  • Netravali A, Stuller J (1979) Motion-compensated transform coding. Bell Syst Tech J 58(7):1703–1718

    Article  MathSciNet  Google Scholar 

  • Puri A, Aravind R, Haskell B, Leonardi R (1990) Video coding with motion-compensated interpolation for CD-ROM applications. Signal Process: Image Commun 2(2):127–144

    Google Scholar 

  • Rissanen J, Langdon GG Jr (1979) Arithmetic coding. IBM J Res Dev 23(2):149–162

    Article  MATH  MathSciNet  Google Scholar 

  • Rocca F (1969) Television bandwidth compression utilizing frame-to-frame correlation and movement compensation. In: Symposium on picture bandwidth compression

    Google Scholar 

  • Saxena A, Fernandes FC (2011) Mode dependent DCT/DST for intra prediction in block-based image/video coding. In: 2011 18th IEEE international conference on image processing (ICIP). IEEE, pp 1685–1688

    Google Scholar 

  • Seyler A (1962) The coding of visual signals to reduce channel-capacity requirements. Proc IEE-Part C: Monogr 109(16):676–684

    Article  Google Scholar 

  • Tescher AG, Cox RV (1976) An adaptive transform coding algorithm. Technical report, DTIC Document

    Google Scholar 

  • Tsai C (2012) AHG6: Baseline options for ALF: Joint collaborative team on video coding (JCT-VC) of ISO/IEC MPEG and ITU-T VCEG. JCTVC-I0157

    Google Scholar 

  • Tsai CY, Chen CY, Yamakage T, Chong IS, Huang YW, Fu CM, Itoh T, Watanabe T, Chujoh T, Karczewicz M et al (2013) Adaptive loop filtering for video coding

    Google Scholar 

  • Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  • Wang H, Ma M, Jiang YG, Wei Z (2014) A framework of video coding for compressing near-duplicate videos. In: MultiMedia modeling. Springer, pp 518–528

    Google Scholar 

  • Watson AB (1998) Toward, a perceptual video-quality metric. In: Photonics West’98 electronic imaging, international society for optics and photonics, pp 139–147

    Google Scholar 

  • Weinberger MJ, Seroussi G, Sapiro G (2000) The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans Image Process 9(8):1309–1324

    Article  Google Scholar 

  • Wiegand T, Zhang X, Girod B (1997) Motion-compensating long-term memory prediction. In: Proceedings of international conference on image processing, vol 2. IEEE, pp 53–56

    Google Scholar 

  • Wien M (2003) Variable block-size transforms for H. 264/AVC. IEEE Trans Circuits Syst Video Technol 13(7):604–613

    Article  Google Scholar 

  • Ye Y, Karczewicz M (2008) Improved h. 264 intra coding based on bi-directional intra prediction, directional transform, and adaptive coefficient scanning. In: 15th IEEE international conference on image processing, ICIP 2008. IEEE, pp 2116–2119

    Google Scholar 

  • Yue H, Sun X, Wu F, Yang J (2012) Sift-based image compression. In: 2012 IEEE international conference on multimedia and expo (ICME). IEEE, pp 473–478

    Google Scholar 

  • Zhao X, Zhang L, Ma S, Gao W (2012) Video coding with rate-distortion optimized transform. IEEE Trans Circuits Syst Video Technol 22(1):138–151

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Gao .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gao, W., Ma, S. (2014). Video Coding Basic Principle. In: Advanced Video Coding Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-14243-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14243-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14242-5

  • Online ISBN: 978-3-319-14243-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics