Advertisement

Conclusions

  • Rodrigo C. BarrosEmail author
  • André C. P. L. F. de Carvalho
  • Alex A. Freitas
Chapter
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

We presented in this book an approach for the automatic design of decision-tree induction algorithms, namely HEAD-DT (Hyper-Heuristic Evolutionary Algorithm for Automatically Designing Decision-Tree Induction Algorithms).

References

  1. 1.
    R.C. Barros et al., A bottom-up oblique decision tree induction algorithm, in 11th International Conference on Intelligent Systems Design and Applications. pp. 450–456 (2011)Google Scholar
  2. 2.
    R.C. Barros et al., A framework for bottom-up induction of decision trees, in Neurocomputing (in press 2013)Google Scholar
  3. 3.
    M.P. Basgalupp et al., A beam-search based decision-tree induction algorithm, in Machine Learning Algorithms for Problem Solving in Computational Applications: Intelligent Techniques. IGI-Global (2011)Google Scholar
  4. 4.
    P. Brazdil et al., Metalearning—Applications to Data Mining. Cognitive Technologies (Springer, Berlin, 2009), pp. I-X, 1–176. ISBN: 978-3-540-73262-4Google Scholar
  5. 5.
    L. Breiman et al., Classification and Regression Trees (Wadsworth, Belmont, 1984)zbMATHGoogle Scholar
  6. 6.
    A.E. Eiben, S.K. Smit, Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol. Comput. 1(1), 19–31 (2011)CrossRefGoogle Scholar
  7. 7.
    A. Frank, A. Asuncion. UCI Machine Learning Repository (2010)Google Scholar
  8. 8.
    A.A. Freitas, A critical review of multi-objective optimization in data mining: a position paper. SIGKDD Explor. Newsl. 6(2), 77–86 (2004). ISSN: 1931–0145CrossRefMathSciNetGoogle Scholar
  9. 9.
    O. Kramer, Self-Adaptive Crossover, Self-Adaptive Heuristics for Evolutionary Computation., Vol. 147. Studies in Computational Intelligence (Springer, Berlin, 2008)Google Scholar
  10. 10.
    G. Landeweerd et al., Binary tree versus single level tree classification of white blood cells. Pattern Recognit. 16(6), 571–577 (1983)CrossRefGoogle Scholar
  11. 11.
    J.R. Quinlan, C4.5: Programs for Machine Learning (Morgan Kaufmann, San Francisco, 1993). ISBN: 1-55860-238-0Google Scholar
  12. 12.
    M. Souto et al., Clustering cancer gene expression data: a comparative study. BMC Bioinform. 9(1), 497 (2008)CrossRefGoogle Scholar
  13. 13.
    C.T. Yildiz, E. Alpaydin, Omnivariate decision trees. IEEE Trans. Neural Netw. 12(6), 1539–1546 (2001)Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Rodrigo C. Barros
    • 1
    Email author
  • André C. P. L. F. de Carvalho
    • 2
  • Alex A. Freitas
    • 3
  1. 1.Faculdade de InformáticaPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  2. 2.Instituto de Ciências Matemáticas e de ComputaçãoUniversidade de São PauloSão CarlosBrazil
  3. 3.School of ComputingUniversity of KentCanterburyUK

Personalised recommendations