Advertisement

Evolutionary Algorithms and Hyper-Heuristics

  • Rodrigo C. BarrosEmail author
  • André C. P. L. F. de Carvalho
  • Alex A. Freitas
Chapter
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

This chapter presents the basic concepts of evolutionary algorithms (EAs) and hyper-heuristics (HHs), which are computational techniques directly explored in this book. EAs are well-known population-based metaheuristics. They have been employed in artificial intelligence over several years with the goal of providing the near-optimal solution for a problem that comprises a very large search space. A general overview of EAs is presented in Sect. 3.1. HHs, in turn, are a recently new field in the optimisation research area, in which a metaheuristic—often an EA, and this is why these related concepts are reviewed together in this chapter—is used for searching in the space of heuristics (algorithms), and not in the space of solutions, like conventional metaheuristics. The near-optimal heuristic (algorithm) provided by a HHs approach can be further employed in several distinct problems, instead of relying on a new search process for each new problem to be solved. An overview of HHs is given in Sect. 3.2.

Keywords

Evolutionary algorithms Evolutionary computation Metaheuristics Hyper-heuristics 

References

  1. 1.
    P.J. Angeline, Subtree crossover: building block engine or macromutation, in Second Annual Conference on Genetic Programming, pp. 9–17 (1997)Google Scholar
  2. 2.
    T. Back, Selective pressure in evolutionary algorithms: a characterization of selection mechanisms, in IEEE Conference on Evolutionary Computation (CEC 1994), pp. 57–62 (1994)Google Scholar
  3. 3.
    W. Banzhaf et al., Genetic Programming: An Introduction–On The Automatic Evolution of Computer Programs and its Applications (Morgan Kaufmann Publishers Inc., San Francisco, 1998). ISBN: 1-55860-510-XCrossRefzbMATHGoogle Scholar
  4. 4.
    M.P. Basgalupp et al., Lexicographic multi-objective evolutionary induction of decision trees. Int. J. Bio-Inspir. Comput. 1(1/2), 105–117 (2009)CrossRefGoogle Scholar
  5. 5.
    T. Blickle, L. Thiele, A Comparison of Selection Schemes Used in Evolutionary Algorithms (Tech. Rep Swiss Federal Institute of Technology, Lausanne, 1995)Google Scholar
  6. 6.
    W. Bohm, A. Geyer-Schulz, Foundations of Genetic Algorithms IV, Exact uniform initialization for genetic programming (Morgan Kaufmann, San Francisco, 1996)Google Scholar
  7. 7.
    E. Burke, S. Gustafson, G. Kendall, Ramped half-n-half initialisation bias in GP, in Genetic and Evolutionary Computation Conference (GECCO 2003), pp. 1800–1801 (2003)Google Scholar
  8. 8.
    E.K. Burke, G. Kendall, E. Soubeiga, A tabu-search hyperheuristic for timetabling and rostering. J. Heuristics 9(6), 451–470 (2003)CrossRefGoogle Scholar
  9. 9.
    E.K. Burke, S. Petrovic, R. Qu, Case-based heuristic selection for timetabling problems. J. Sched. 9(2), 115–132 (2006). ISSN: 1094–6136CrossRefzbMATHGoogle Scholar
  10. 10.
    E.K. Burke et al., A graph-based hyper-heuristic for educational timetabling problems. Eur. J. Oper. Res. 176(1), 177–192 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    E.K. Burke et al., A survey of hyper-heuristics. Technical report Computer Science Technical Report No. NOTTCS-TR-SUB-0906241418-2747. School of Computer Science and Information Technology, University of Nottingham (2009)Google Scholar
  12. 12.
    K. Chellapilla, Evolving computer programs without subtree crossover. IEEE Trans. Evol. Comput. 1(3), 209–216 (1997)CrossRefGoogle Scholar
  13. 13.
    C. Coello, A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowl. Inf. Syst. 1(3), 129–156 (1999)Google Scholar
  14. 14.
    C.A.C. Coello, G.B. Lamont, D.A.V. Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems, Genetic and Evolutionary Computation (Springer, New York, 2006)Google Scholar
  15. 15.
    P.I. Cowling, G. Kendall, E. Soubeiga, A hyperheuristic approach to scheduling a sales summit, in Third International Conference on Practice and Theory of Automated Timetabling. Springer, Berlin, pp. 176–190 (2001)Google Scholar
  16. 16.
    A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing (Springer, Berlin, 2003)CrossRefzbMATHGoogle Scholar
  17. 17.
    H. Fisher, G.L. Thompson, Probabilistic learning combinations of local job-shop scheduling rules, in Industrial Scheduling, ed. by J.F. Muth, G.L. Thompson (Prentice Hall, Upper Saddle River, 1963), pp. 225–251Google Scholar
  18. 18.
    A. Frank, A. Asuncion, UCI Machine Learning Repository (2010)Google Scholar
  19. 19.
    A.A. Freitas, Data Mining and Knowledge Discovery with Evolutionary Algorithms (Springer, New York, 2002). ISBN: 3540433317Google Scholar
  20. 20.
    A.A. Freitas, A review of evolutionary algorithms for data mining, in Soft Computing for Knowledge Discovery and Data Mining, ed. by O. Maimon, L. Rokach (Springer, Berlin, 2008), pp. 79–111. ISBN: 978-0-387-69935-6Google Scholar
  21. 21.
    P. Garrido, C. Castro, Stable solving of CVRPs using hyperheuristics, in Proceedings of the 11th Annual conference on Genetic and evolutionary computation. GECCO’09. Montreal, Québec, (Canada: ACM, 2009), pp. 255–262. ISBN: 978-1-60558-325-9Google Scholar
  22. 22.
    P. Garrido, M.-C. Riff, An evolutionary hyperheuristic to solve strip-packing problems, in Proceedings of the 8th international conference on Intelligent data engineering and automated learning. IDEAL’07. Springer, Birmingham, pp. 406–415 (2007)Google Scholar
  23. 23.
    P. Garrido, M.C. Riff, DVRP: a hard dynamic combinatorial optimisation problem tackled by an evolutionary hyper-heuristic. J. Heuristics 16(6), 795–834 (2010). ISSN: 1381–1231Google Scholar
  24. 24.
    D.E. Goldberg, K. Deb, A comparative analysis of selection schemes used in genetic algorithms, in Foundations of Genetic Algorithms, ed. by G.J.E. Rawlins (Morgan Kaufmann, San Mateo, 1991), pp. 69–93Google Scholar
  25. 25.
    J.H. Holland, Adaptation in Natural and Artificial Systems (MIT Press, Cambridge, 1975)Google Scholar
  26. 26.
    J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, 1992). ISBN: 0-262-11170-5Google Scholar
  27. 27.
    S. Luke, Two fast tree-creation algorithms for genetic programming. IEEE Trans. Evol. Comput. 4(3), 274–283 (2000)CrossRefGoogle Scholar
  28. 28.
    H. Majeed, C. Ryan, Using context-aware crossover to improve the performance of GP, in 8th Annual Conference on Genetic and Evolutionary Computation (GECCO’06). ACM, pp. 847–854 (2006)Google Scholar
  29. 29.
    H. Majeed, C. Ryan, A less destructive, context-aware crossover operator for GP, in Lecture Notes in Computer Science, ed. by P. Collet, et al. (Springer, Berlin, 2006), pp. 36–48Google Scholar
  30. 30.
    J.G. Marín-Blázquez, S. Schulenburg, A hyper-heuristic framework with XCS: learning to create novel problem-solving algorithms constructed from simpler algorithmic ingredients, in Proceedings of the 2003–2005 International Conference on Learning Classifier Systems. IWLCS’03-05. (Berlin: Springer, 2007), pp. 193–218. ISBN: 978-3-540-71230-5Google Scholar
  31. 31.
    M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, 1998). ISBN: 0262631857Google Scholar
  32. 32.
    G. Ochoa et al., Dispatching rules for production scheduling: A hyper-heuristic landscape analysis, in IEEE Congr. Evol. Comput. pp. 1873–1880 (2009)Google Scholar
  33. 33.
    G. Ochoa, R. Qu, E.K. Burke. Analyzing the landscape of a graph based hyper-heuristic for timetabling problems, in Proceedings of the 11th Annual conference on Genetic and Evolutionary Computation. GECCO’09. Montreal, Québec, (Canada: ACM, 2009), pp. 341–348. ISBN: 978-1-60558-325-9Google Scholar
  34. 34.
    M. Oltean, Evolving evolutionary algorithms using linear genetic programming. Evol. Comput. 13(3), 387–410 (2005)CrossRefGoogle Scholar
  35. 35.
    E. Özcan, B. Bilgin, E.E. Korkmaz, A comprehensive analysis of hyper-heuristics. Intell. Data Anal. 12(1), 3–23 (2008)Google Scholar
  36. 36.
    G.L. Pappa, A.A. Freitas, Automating the Design of Data Mining Algorithms: An Evolutionary Computation Approach (Springer Publishing Company Incorporated, New York, 2009)Google Scholar
  37. 37.
    N. Pillay, An analysis of representations for hyper-heuristics for the uncapacitated examination timetabling problem in a genetic programming system, in Proceedings of the 2008 Annual Research Conference of the South African Institute of Computer Scientists and Information Technologists on IT Research in Developing Countries: Riding the Wave of Technology. SAICSIT’08. Wilderness, (South Africa: ACM, 2008), pp. 188–192. ISBN: 978-1-60558-286-3Google Scholar
  38. 38.
    K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002). ISSN: 1063–6560CrossRefGoogle Scholar
  39. 39.
    R.H. Storer, S.D. Wu, R. Vaccari, New search spaces for sequencing problems with application to job shop scheduling. Manag. Sci. 38(10), 1495–1509 (1992)CrossRefzbMATHGoogle Scholar
  40. 40.
    H. Terashima-Marín et al., Generalized hyper-heuristics for solving 2D regular and irregular packing problems. Ann. Oper. Res. 179(1), 369–392 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    N. Uy et al., in Lecture Notes in Computer Science, Semantic similarity based crossover in GP: The case for real-valued function regression, ed. by P. Collet, et al. (Springer, Berlin, 2010), pp. 170–181Google Scholar
  42. 42.
    J.A. Vázquez-Rodríguez, S. Petrovic, A new dispatching rule based genetic algorithm for the multi-objective job shop problem. J. Heuristics 16(6), 771–793 (2010)CrossRefzbMATHGoogle Scholar
  43. 43.
    A. Vella, D. Corne, C. Murphy, Hyper-heuristic decision tree induction, in World Congress on Nature and Biologically Inspired Computing, pp. 409–414 (2010)Google Scholar
  44. 44.
    T. Weise, Global Optimization Algorithms—Theory and Application. en. Second. Online available at http://www.it-weise.de/. Accessed in Sept 2009. Self-Published, (2009)
  45. 45.
    J.R. Woodward, GA or GP? That is not the question, in IEEE Congress on Evol. Comput. (CEC 2003). pp. 1056–1063 (2003)Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Rodrigo C. Barros
    • 1
    Email author
  • André C. P. L. F. de Carvalho
    • 2
  • Alex A. Freitas
    • 3
  1. 1.Faculdade de InformáticaPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  2. 2.Instituto de Ciências Matemáticas e de ComputaçãoUniversidade de São PauloSão CarlosBrazil
  3. 3.School of ComputingUniversity of KentCanterburyUK

Personalised recommendations