• Rodrigo C. BarrosEmail author
  • André C. P. L. F. de Carvalho
  • Alex A. Freitas
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)


Classification, which is the data mining task of assigning objects to predefined categories, is widely used in the process of intelligent decision making.


Genetic Programming Data Mining Task Predefined Category Inductive Bias Free Lunch Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.C. Barros et al., A bottom-up oblique decision tree induction algorithm, in 11th International Conference on Intelligent Systems Design and Applications. pp. 450–456 (2011)Google Scholar
  2. 2.
    R.C. Barros et al., A survey of evolutionary algorithms for decision-tree induction. IEEE Trans. Syst., Man, Cybern., Part C: Appl. Rev. 42(3), 291–312 (2012)CrossRefMathSciNetGoogle Scholar
  3. 3.
    K. Bennett, O. Mangasarian, Multicategory discrimination via linear programming. Optim. Methods Softw. 2, 29–39 (1994)Google Scholar
  4. 4.
    L. Breiman et al., Classification and Regression Trees (Wadsworth, Belmont, 1984)zbMATHGoogle Scholar
  5. 5.
    L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    L. Breslow, D. Aha, Simplifying decision trees: a survey. Knowl. Eng. Rev. 12(01), 1–40 (1997)CrossRefGoogle Scholar
  7. 7.
    P. Cowling, G. Kendall, E. Soubeiga, A Hyperheuristic Approach to Scheduling a Sales Summit, in Practice and Theory of Automated Timetabling III, Vol. 2079. Lecture Notes in Computer Science, ed. by E. Burke, W. Erben (Springer, Berlin, 2001), pp. 176–190CrossRefGoogle Scholar
  8. 8.
    A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing (Natural Computing Series) (Springer, Berlin, 2008)Google Scholar
  9. 9.
    F. Esposito, D. Malerba, G. Semeraro, A comparative analysis of methods for pruning decision trees. IEEE Trans. Pattern Anal. Mach. Intell. 19(5), 476–491 (1997)CrossRefGoogle Scholar
  10. 10.
    A.A. Freitas, Data Mining and Knowledge Discovery with Evolutionary Algorithms (Springer, New York, 2002). ISBN: 3540433317CrossRefzbMATHGoogle Scholar
  11. 11.
    A.A. Freitas, A Review of evolutionary Algorithms for Data Mining, in Soft Computing for Knowledge Discovery and Data Mining, ed. by O. Maimon, L. Rokach (Springer, Berlin, 2008), pp. 79–111. ISBN: 978-0-387-69935-6CrossRefGoogle Scholar
  12. 12.
    A.A. Freitas, D.C. Wieser, R. Apweiler, On the importance of comprehensible classification models for protein function prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 7, 172–182 (2010). ISSN: 1545–5963Google Scholar
  13. 13.
    KDNuggets, Poll: Data mining/analytic methods you used frequently in the past 12 months (2007)Google Scholar
  14. 14.
    A. Keane, S. Brown, The design of a satellite boom with enhanced vibration performance using genetic algorithm techniques, in Conference on Adaptative Computing in Engineering Design and Control. Plymouth, pp. 107–113 (1996)Google Scholar
  15. 15.
    B. Kim, D. Landgrebe, Hierarchical classifier design in high-dimensional numerous class cases. IEEE Trans. Geosci. Remote Sens. 29(4), 518–528 (1991)CrossRefGoogle Scholar
  16. 16.
    J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, 1992). ISBN: 0-262-11170-5zbMATHGoogle Scholar
  17. 17.
    G. Landeweerd et al., Binary tree versus single level tree classification of white blood cells. Pattern Recognit. 16(6), 571–577 (1983)CrossRefGoogle Scholar
  18. 18.
    A.R. Oganov et al., Ionic high-pressure form of elemental boron. Nature 457, 863–867 (2009)CrossRefGoogle Scholar
  19. 19.
    G.L. Pappa et al., Contrasting meta-learning and hyper-heuristic research: the role of evolutionary algorithms, in Genetic Programming and Evolvable Machines (2013)Google Scholar
  20. 20.
    G.L. Pappa, A.A. Freitas, Automating the Design of Data Mining Algorithms: An Evolutionary Computation Approach (Springer Publishing Company Incorporated, New York, 2009)Google Scholar
  21. 21.
    J.R. Quinlan, C4.5: Programs for Machine Learning (Morgan Kaufmann, San Francisco, 1993). ISBN: 1-55860-238-0Google Scholar
  22. 22.
    L. Rokach, O. Maimon, Top-down induction of decision trees classifiers—a survey. IEEE Trans. Syst. Man, Cybern. Part C: Appl. Rev. 35(4), 476–487 (2005)CrossRefGoogle Scholar
  23. 23.
    K.A. Smith-Miles, Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41, 6:1–6:25 (2009)Google Scholar
  24. 24.
    K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002). ISSN: 1063–6560CrossRefGoogle Scholar
  25. 25.
    A. Vella, D. Corne, C. Murphy, Hyper-heuristic decision tree induction, in World Congress on Nature and Biologically Inspired Computing, pp. 409–414 (2010)Google Scholar
  26. 26.
    D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Rodrigo C. Barros
    • 1
    Email author
  • André C. P. L. F. de Carvalho
    • 2
  • Alex A. Freitas
    • 3
  1. 1.Faculdade de InformáticaPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  2. 2.Instituto de Ciências Matemáticas e de ComputaçãoUniversidade de São PauloSão CarlosBrazil
  3. 3.School of ComputingUniversity of KentCanterburyUK

Personalised recommendations