Skip to main content

ARTOD: Autonomous Real Time Objects Detection by a Moving Camera Using Recursive Density Estimation

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 586))

Abstract

A new approach to autonomously detect moving objects in a video captured by a moving camera is proposed in this chapter. The proposed method is separated in two modules. In the first part, the well-known scale invariant feature transformation (SIFT) and the RANSAC algorithm are used to estimate the camera movement. In the second part, recursive density estimation (RDE) is used to build a model of the background and detect moving objects in a scene. The results are presented for both indoor and outdoor video sequences taken from a UAV for outdoor scenario and handheld camera for indoor experiment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Sadeghi-Tehran, P. Angelov, R. Ramezani, A Fast Approach to Autonomous Detection, Identification, and Tracking of Multiple Objects in Video Streams under Uncertainties (Springer, Berlin, 2010)

    Book  Google Scholar 

  2. A. Elgammal et al., Background and foreground modeling using nonparametric kernel density for visual surveillance. Proc. IEEE 40, 1151–1163 (2002)

    Article  Google Scholar 

  3. B. Leibe et al., Coupled object detection and tracking from static cameras and moving vehicles. IEEE Trans. Pattern Anal. Mach. Intell. 30(10), 1683–1698 (2008)

    Article  Google Scholar 

  4. L. Maddalena, A. Petrosino, Stopped object detection by learning foreground model in videos. IEEE Trans. Neural Netw. Learn. Syst. 24(5), 723–735 (2013)

    Article  Google Scholar 

  5. M. Markou, S. Singh, Novelty detection: a review, part 1: statistical approaches. Sig. Process. 83, 2481–2497 (2003)

    Article  MATH  Google Scholar 

  6. C. Stauffer, W. Grimson, Adaptive background mixture models for real-time tracking, in Computer Vision and Pattern Recognition (1999)

    Google Scholar 

  7. B. Stenger et al., Topology free hidden markov models: application to background modelling, in Proceedings of IEEE Conference in Computer Vision (2001)

    Google Scholar 

  8. A. Elgammal, D. Harwood, L.S. Davis, Nonparametric background model for background subtraction, in Proceedings of Conference Computer Vision (2000)

    Google Scholar 

  9. M. Gelgon, P.A. Bouthemy, A region-level motion based graph representation and labeling for tracking a spatial image partition. Pattern Recogn. 33, 725–740 (2000)

    Article  Google Scholar 

  10. D. Murray, A. Basu, Motion tracking with an active camera. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 449–459 (1994)

    Article  Google Scholar 

  11. S. Araki et al., Real time tracking of multiple moving object contours in a moving camera image sequence. IEICE Trans. Info. Syst. 83(7), 1583–1591 (2000)

    MathSciNet  Google Scholar 

  12. I. Celasun et al., 2-D mesh based video object segmentation and tracking with occlusion resolution. Sig. Proc. Image Commun. 16, 949–962 (2001)

    Article  Google Scholar 

  13. A. Wedel et al., Detection and segmentation of independently moving objects from dense scene flow, in Proceedings of International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition (2009), pp. 14–27

    Google Scholar 

  14. G. Zhang et al., Moving object extraction with a hand held camera, in Proceedings of International Conference on Computer Vision (2006), pp. 1–8

    Google Scholar 

  15. H. Bay et al., SURF: speeded up robust features, in Computer Vision and Image Understanding (CVIU) (2008), pp. 346–359

    Google Scholar 

  16. E. Rublee et al., in ORB: An Efficient Alternative to SIFT and SURF (2010)

    Google Scholar 

  17. D.G. Lowe, Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  18. M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  19. D. Farin, W.A. Effelsberg, video-object segmentation using multi-sprite background subtraction, in Proceedings of IEEE International Conference on Multimedia and Expo (2004), pp. 343–346

    Google Scholar 

  20. E. Hayman, J. Eklundh, Statistical background subtraction for a mobile observer, in Ninth IEEE International Conference on Computer Vision (2003), pp. 67–74

    Google Scholar 

  21. A. Mittal, D. Huttenlocher, Scene modeling for wide area surveillance and image synthesis, in IEEE Computer Society (2000), pp. 160–167

    Google Scholar 

  22. E. Tsinko, Background subtraction with a pan/tilt camera, in The Faculty of Graduate Studies (The University of British Columbia, 2010)

    Google Scholar 

  23. P. Angelov et al., ARTOT: autonomous real-time object detection and tracking by a moving camera, in Proceedings of 2012 IEEE Conference on Intelligent Systems (2012)

    Google Scholar 

  24. Y. Sugaya, K. Kanatani, Extracting moving objects from a moving camera video sequence, in 10th Symposium on Sensing via Imaging Information (2004), pp. 279–284

    Google Scholar 

  25. R. Hartley, A. Zisserman, in Multiple view geometry in computer vision. (Cambridge University Press, 2003)

    Google Scholar 

  26. Y. Abdel-Aziz, H. Karara, Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. Amer. Soc. Photogrammetry, pp. 1–18 (1971)

    Google Scholar 

  27. P. Angelov, An approach for fuzzy rule-base adaptation using online clustering. Int. J. Approximate Reasoning, pp. 275–289 (2004)

    Google Scholar 

  28. P. Angelov, in Anomalous System State Identification, Patent Filled, GB1208542.9, priority date 15 May 2012

    Google Scholar 

  29. P. Angelov, R. Ramezani, X. Zhou, Autonomous novelty detection and object tracking in video streams using evolving clustering and Takagi-Sugeno type neuro-fuzzy system, in IEEE International Joint Conference on Neural Networks (2008), pp. 1457–1464

    Google Scholar 

  30. R. O. Duda, , D.G. Stork, P.E. Hart, in Pattern Classification, 2nd edn. (Willey-Interscience, New York, 2000)

    Google Scholar 

  31. P. Angelov, P. Sadeghi-Tehran, R. Ramezani, A real-time approach to autonomous novelty detection and object tracking in video stream. Int. J. Intell. Syst. 26(3), 189–205 (2011)

    Article  MATH  Google Scholar 

  32. P. Sadeghi-Tehran, Automatic methods for video-streams analysis and self-evolving controllers, in School of Computing and Communications (Lancaster University, 2012), p. 195

    Google Scholar 

  33. P. Angelov, in Autonomous Learning Systems: From Data Streams to Knowledge in Real Time (John Wiley and Sons, New York, 2012). ISBN 978-1-1199-5152-0, 273 pp

    Google Scholar 

  34. K. Kim et al., Real-time foreground–background segmentation using codebook model. Real-Time Imaging 11(3), 172–185 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Plamen Angelov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sadeghi-Tehran, P., Angelov, P. (2016). ARTOD: Autonomous Real Time Objects Detection by a Moving Camera Using Recursive Density Estimation. In: Hadjiski, M., Kasabov, N., Filev, D., Jotsov, V. (eds) Novel Applications of Intelligent Systems. Studies in Computational Intelligence, vol 586. Springer, Cham. https://doi.org/10.1007/978-3-319-14194-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14194-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14193-0

  • Online ISBN: 978-3-319-14194-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics