Skip to main content

Molecular and Genetic Factors in Crohn’s Disease

  • Chapter
Book cover Crohn’s Disease

Abstract

The precise etiology of Crohn’s disease (CD) is not yet known. However, research in the fields of immunology, microbiology, and genetics suggests an interplay between host and environmental factors (Table 2.1). Environmental factors may be external agents that a patient has been exposed to such as NSAIDs or cigarette smoking or present within the host, such as the microbes and pathogens that comprise the microbiome. Host factors relate to the individual’s immunologic response to these external factors, which increasingly appear to be genetically defined or programmed early in life. This interplay between host physiology and external agents ultimately leads to an alteration in the host’s inflammatory homeostasis and maintenance of the gut mucosal integrity (Fig. 2.1) resulting in unchecked inflammation, enteric bacterial invasion, and worsening tissue destruction. Additionally, the variation in the multitude of factors that interact within the individual patient presumably results in the dozens of different phenotypes of CD (stricturing, fistulizing, inflammatory, ileal, colonic, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stappenbeck TS, Rioux JD, Mizoguchi A, Saitoh T, Huett A, Darfeuille-Michaud A, et al. Crohn disease: a current perspective on genetics, autophagy and immunity. Autophagy. 2011;7(4):355–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Wagner J, Sim WH, Lee KJ, Kirkwood CD. Current knowledge and systematic review of viruses associated with Crohn’s disease. Rev Med Virol. 2013;23(3):145–71.

    CAS  PubMed  Google Scholar 

  3. Koltun WA. Diagnosis and evaluation. In: Beck DE, Roberts PL, Saclarides TJ, editors. The ASCRS textbook of colon and rectal surgery. 2nd ed. New York: Springer; 2011. p. 449–62.

    Google Scholar 

  4. Cho JH, Brant SR. Recent insights into the genetics of inflammatory bowel disease. Gastroenterology. 2011;140(6):1704–12.

    CAS  PubMed  Google Scholar 

  5. Ponder A, Long MD. A clinical review of recent findings in the epidemiology of inflammatory bowel disease. Clin Epidemiol. 2013;5:237–47.

    PubMed Central  PubMed  Google Scholar 

  6. Bernstein CN, Shanahan F. Disorders of a modern lifestyle: reconciling the epidemiology of inflammatory bowel diseases. Gut. 2008;57(9):1185–91.

    PubMed  Google Scholar 

  7. Nell S, Suerbaum S, Josenhans C. The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nat Rev Microbiol. 2010;8(8):564–77.

    CAS  PubMed  Google Scholar 

  8. Hancock L, Beckly J, Geremia A, Cooney R, Cummings F, Pathan S, et al. Clinical and molecular characteristics of isolated colonic Crohn’s disease. Inflamm Bowel Dis. 2008;14(12):1667–77.

    PubMed  Google Scholar 

  9. Cuthbert AP, Fisher SA, Mirza MM, King K, Hampe J, Croucher PJ, et al. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology. 2002;122(4):867–74.

    CAS  PubMed  Google Scholar 

  10. Bhat M, Nguyen GC, Pare P, Lahaie R, Deslandres C, Bernard EJ, et al. Phenotypic and genotypic characteristics of inflammatory bowel disease in French Canadians: comparison with a large North American repository. Am J Gastroenterol. 2009;104(9):2233–40.

    PubMed Central  PubMed  Google Scholar 

  11. Fernandez L, Mendoza JL, Martinez A, Urcelay E, Fernandez-Arquero M, Garcia-Paredes J, et al. IBD1 and IBD3 determine location of Crohn’s disease in the Spanish population. Inflamm Bowel Dis. 2004;10(6):715–22.

    PubMed  Google Scholar 

  12. Ahmad T, Armuzzi A, Bunce M, Mulcahy-Hawes K, Marshall SE, Orchard TR, et al. The molecular classification of the clinical manifestations of Crohn’s disease. Gastroenterology. 2002;122(4):854–66.

    CAS  PubMed  Google Scholar 

  13. Barrett R, Zhang X, Koon HW, Vu M, Chang JY, Yeager N, et al. Constitutive TL1A expression under colitogenic conditions modulates the severity and location of gut mucosal inflammation and induces fibrostenosis. Am J Pathol. 2012;180(2):636–49.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Shih DQ, Barrett R, Zhang X, Yeager N, Koon HW, Phaosawasdi P, et al. Constitutive TL1A (TNFSF15) expression on lymphoid or myeloid cells leads to mild intestinal inflammation and fibrosis. PLoS One. 2011;6(1):e16090.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Sehgal R, Berg A, Polinski JI, Hegarty JP, Lin Z, McKenna KJ, et al. Mutations in IRGM are associated with more frequent need for surgery in patients with ileocolonic Crohn’s disease. Dis Colon Rectum. 2012;55(2):115–21.

    PubMed  Google Scholar 

  16. Connelly TM, Koltun WA, Berg AS, Hegarty JP, Brinton D, Deiling S, et al. A single nucleotide polymorphism in the STAT5 gene favors colonic as opposed to small-bowel inflammation in Crohn’s disease. Dis Colon Rectum. 2013;56(9):1068–74.

    PubMed  Google Scholar 

  17. Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schaffer AA, Noyan F, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361(21):2033–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Connelly TM, Sehgal R, Berg AS, Hegarty JP, Deiling S, Stewart DB, et al. Mutation in TAGAP is protective of anal sepsis in ileocolic Crohn’s disease. Dis Colon Rectum. 2012;55(11):1145–52.

    PubMed  Google Scholar 

  19. Dubinsky MC, Mei L, Friedman M, Dhere T, Haritunians T, Hakonarson H, et al. Genome wide association (GWA) predictors of anti-TNFalpha therapeutic responsiveness in pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2010;16(8):1357–66.

    PubMed Central  PubMed  Google Scholar 

  20. Farrell RJ, Murphy A, Long A, Donnelly S, Cherikuri A, O’Toole D, et al. High multidrug resistance (P-glycoprotein 170) expression in inflammatory bowel disease patients who fail medical therapy. Gastroenterology. 2000;118(2):279–88.

    CAS  PubMed  Google Scholar 

  21. Cucchiara S, Latiano A, Palmieri O, Canani RB, D’Inca R, Guariso G, et al. Polymorphisms of tumor necrosis factor-alpha but not MDR1 influence response to medical therapy in pediatric-onset inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2007;44(2):171–9. PMID: 17255827.

    CAS  PubMed  Google Scholar 

  22. Van Limbergen J, Russell RK, Nimmo ER, Drummond HE, Smith L, Anderson NH, et al. Autophagy gene ATG16L1 influences susceptibility and disease location but not childhood-onset in Crohn’s disease in Northern Europe. Inflamm Bowel Dis. 2008;14(3):338–46.

    PubMed  Google Scholar 

  23. Prescott NJ, Fisher SA, Franke A, Hampe J, Onnie CM, Soars D, et al. A nonsynonymous SNP in ATG16L1 predisposes to ileal Crohn’s disease and is independent of CARD15 and IBD5. Gastroenterology. 2007;132(5):1665–71.

    CAS  PubMed  Google Scholar 

  24. Duraes C, Machado JC, Portela F, Rodrigues S, Lago P, Cravo M, et al. Phenotype–genotype profiles in Crohn’s disease predicted by genetic markers in autophagy-related genes (GOIA study II). Inflamm Bowel Dis. 2013;19(2):230–9.

    PubMed  Google Scholar 

  25. Seiderer J, Brand S, Herrmann KA, Schnitzler F, Hatz R, Crispin A, et al. Predictive value of the CARD15 variant 1007fs for the diagnosis of intestinal stenoses and the need for surgery in Crohn’s disease in clinical practice: results of a prospective study. Inflamm Bowel Dis. 2006;12(12):1114–21.

    PubMed  Google Scholar 

  26. Vermeire S, Pierik M, Hlavaty T, Claessens G, van Schuerbeeck N, Joossens S, et al. Association of organic cation transporter risk haplotype with perianal penetrating Crohn’s disease but not with susceptibility to IBD. Gastroenterology. 2005;129(6):1845–53.

    CAS  PubMed  Google Scholar 

  27. Potocnik U, Ferkolj I, Glavac D, Dean M. Polymorphisms in multidrug resistance 1 (MDR1) gene are associated with refractory Crohn disease and ulcerative colitis. Genes Immun. 2004;5(7):530–9.

    CAS  PubMed  Google Scholar 

  28. Dubinsky MC, Kugathasan S, Kwon S, Haritunians T, Wrobel I, Wahbeh G, et al. Multidimensional prognostic risk assessment identifies association between IL12B variation and surgery in Crohn’s disease. Inflamm Bowel Dis. 2013;19(8):1662–70.

    PubMed  Google Scholar 

  29. Roberts RL, Hollis-Moffatt JE, Gearry RB, Kennedy MA, Barclay ML, Merriman TR. Confirmation of association of IRGM and NCF4 with ileal Crohn’s disease in a population-based cohort. Genes Immun. 2008;9(6):561–5.

    CAS  PubMed  Google Scholar 

  30. Begue B, Verdier J, Rieux-Laucat F, Goulet O, Morali A, Canioni D, et al. Defective IL10 signaling defining a subgroup of patients with inflammatory bowel disease. Am J Gastroenterol. 2011;106(8):1544–55.

    CAS  PubMed  Google Scholar 

  31. Lacruz-Guzman D, Torres-Moreno D, Pedrero F, Romero-Cara P, Garcia-Tercero I, Trujillo-Santos J, et al. Influence of polymorphisms and TNF and IL1beta serum concentration on the infliximab response in Crohn’s disease and ulcerative colitis. Eur J Clin Pharmacol. 2013;69(3):431–8.

    CAS  PubMed  Google Scholar 

  32. Newman B, Silverberg MS, Gu X, Zhang Q, Lazaro A, Steinhart AH, et al. CARD15 and HLA DRB1 alleles influence susceptibility and disease localization in Crohn’s disease. Am J Gastroenterol. 2004;99(2):306–15.

    CAS  PubMed  Google Scholar 

  33. Summers RW, Elliott DE, Urban Jr JF, Thompson R, Weinstock JV. Trichuris suis therapy in Crohn’s disease. Gut. 2005;54(1):87–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Binder V. Genetic epidemiology in inflammatory bowel disease. Dig Dis. 1998;16(6):351–5.

    CAS  PubMed  Google Scholar 

  35. Probert CS, Jayanthi V, Pinder D, Wicks AC, Mayberry JF. Epidemiological study of ulcerative proctocolitis in Indian migrants and the indigenous population of Leicestershire. Gut. 1992;33(5):687–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Montgomery SM, Morris DL, Pounder RE, Wakefield AJ. Asian ethnic origin and the risk of inflammatory bowel disease. Eur J Gastroenterol Hepatol. 1999;11(5):543–6.

    CAS  PubMed  Google Scholar 

  37. Greenstein RJ. Is Crohn’s disease caused by a mycobacterium? Comparisons with leprosy, tuberculosis, and Johne’s disease. Lancet Infect Dis. 2003;3(8):507–14.

    PubMed  Google Scholar 

  38. Farmer RG, Michener WM, Mortimer EA. Studies of family history among patients with inflammatory bowel disease. Clin Gastroenterol. 1980;9(2):271–7.

    CAS  PubMed  Google Scholar 

  39. Halme L, Paavola-Sakki P, Turunen U, Lappalainen M, Farkkila M, Kontula K. Family and twin studies in inflammatory bowel disease. World J Gastroenterol. 2006;12(23):3668–72.

    PubMed Central  PubMed  Google Scholar 

  40. Peeters M, Nevens H, Baert F, Hiele M, de Meyer AM, Vlietinck R, et al. Familial aggregation in Crohn’s disease: increased age-adjusted risk and concordance in clinical characteristics. Gastroenterology. 1996;111(3):597–603.

    CAS  PubMed  Google Scholar 

  41. Colombel JF, Grandbastien B, Gower-Rousseau C, Plegat S, Evrard JP, Dupas JL, et al. Clinical characteristics of Crohn’s disease in 72 families. Gastroenterology. 1996;111(3):604–7.

    CAS  PubMed  Google Scholar 

  42. Satsangi J, Grootscholten C, Holt H, Jewell DP. Clinical patterns of familial inflammatory bowel disease. Gut. 1996;38(5):738–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Bayless TM, Tokayer AZ, Polito 2nd JM, Quaskey SA, Mellits ED, Harris ML. Crohn’s disease: concordance for site and clinical type in affected family members – potential hereditary influences. Gastroenterology. 1996;111(3):573–9.

    CAS  PubMed  Google Scholar 

  44. Parkes M, Jewell D. Ulcerative colitis and Crohns disease: molecular genetics and clinical implications. Expert Rev Mol Med. 2001;2001:1–18.

    PubMed  Google Scholar 

  45. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411(6837):599–603.

    CAS  PubMed  Google Scholar 

  46. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Budarf ML, Labbe C, David G, Rioux JD. GWA studies: rewriting the story of IBD. Trends Genet. 2009;25(3):137–46. PMID: 19217684.

    CAS  PubMed  Google Scholar 

  48. Santaolalla R, Abreu MT. Innate immunity in the small intestine. Curr Opin Gastroenterol. 2012;28(2):124–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Mokry M, Middendorp S, Wiegerinck CL, Witte M, Teunissen H, Meddens CA, et al. Many inflammatory bowel disease risk loci include regions that regulate gene expression in immune cells and the intestinal epithelium. Gastroenterology. 2014;146(4):1040–7.

    CAS  PubMed  Google Scholar 

  50. Rutgeerts P, Goboes K, Peeters M, Hiele M, Penninckx F, Aerts R, et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet. 1991;338(8770):771–4.

    CAS  PubMed  Google Scholar 

  51. Man SM, Kaakoush NO, Mitchell HM. The role of bacteria and pattern-recognition receptors in Crohn’s disease. Nat Rev Gastroenterol Hepatol. 2011;8(3):152–68.

    PubMed  Google Scholar 

  52. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104(34):13780–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009;15(8):1183–9.

    CAS  PubMed  Google Scholar 

  54. Hviid A, Svanstrom H, Frisch M. Antibiotic use and inflammatory bowel diseases in childhood. Gut. 2011;60(1):49–54.

    PubMed  Google Scholar 

  55. Kronman MP, Zaoutis TE, Haynes K, Feng R, Coffin SE. Antibiotic exposure and IBD development among children: a population-based cohort study. Pediatrics. 2012;130(4):e794–803.

    PubMed Central  PubMed  Google Scholar 

  56. Shaw SY, Blanchard JF, Bernstein CN. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am J Gastroenterol. 2010;105(12):2687–92.

    PubMed  Google Scholar 

  57. Virta L, Auvinen A, Helenius H, Huovinen P, Kolho KL. Association of repeated exposure to antibiotics with the development of pediatric Crohn’s disease – a nationwide, register-based Finnish case-control study. Am J Epidemiol. 2012;175(8):775–84.

    PubMed  Google Scholar 

  58. Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun. 2000;68(12):7010–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. McCauley JL, Abreu MT. Genetics in diagnosing and managing inflammatory bowel disease. Gastroenterol Clin North Am. 2012;41(2):513–22.

    PubMed  Google Scholar 

  60. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361(21):2066–78.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Kosovac K, Brenmoehl J, Holler E, Falk W, Schoelmerich J, Hausmann M, et al. Association of the NOD2 genotype with bacterial translocation via altered cell–cell contacts in Crohn’s disease patients. Inflamm Bowel Dis. 2010;16(8):1311–21.

    PubMed  Google Scholar 

  62. Bonen DK, Ogura Y, Nicolae DL, Inohara N, Saab L, Tanabe T, et al. Crohn’s disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. Gastroenterology. 2003;124(1):140–6.

    CAS  PubMed  Google Scholar 

  63. Petersen HJ, Smith AM. The role of the innate immune system in granulomatous disorders. Front Immunol. 2013;4:120.

    PubMed Central  PubMed  Google Scholar 

  64. Fisher SA, Tremelling M, Anderson CA, Gwilliam R, Bumpstead S, Prescott NJ, et al. Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat Genet. 2008;40(6):710–2.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.

    Google Scholar 

  66. Eksteen B, Liaskou E, Adams DH. Lymphocyte homing and its role in the pathogenesis of IBD. Inflamm Bowel Dis. 2008;14(9):1298–312.

    PubMed  Google Scholar 

  67. Biancheri P, Di Sabatino A, Rovedatti L, Giuffrida P, Calarota SA, Vetrano S, et al. Effect of tumor necrosis factor-alpha blockade on mucosal address in cell-adhesion molecule-1 in Crohn’s disease. Inflamm Bowel Dis. 2013;19(2):259–64.

    PubMed  Google Scholar 

  68. Adolph TE, Tomczak MF, Niederreiter L, Ko HJ, Bock J, Martinez-Naves E, et al. Paneth cells as a site of origin for intestinal inflammation. Nature. 2013;503(7475):272–6.

    CAS  PubMed  Google Scholar 

  69. Van Limbergen J, Wilson DC, Satsangi J. The genetics of Crohn’s disease. Annu Rev Genomics Hum Genet. 2009;10:89–116.

    PubMed  Google Scholar 

  70. Marks DJ, Rahman FZ, Sewell GW, Segal AW. Crohn’s disease: an immune deficiency state. Clin Rev Allergy Immunol. 2010;38(1):20–31.

    CAS  PubMed  Google Scholar 

  71. Schreiber S, Rosenstiel P, Albrecht M, Hampe J, Krawczak M. Genetics of Crohn disease, an archetypal inflammatory barrier disease. Nat Rev Genet. 2005;6(5):376–88.

    CAS  PubMed  Google Scholar 

  72. Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem. 1998;273(45):29745–53.

    CAS  PubMed  Google Scholar 

  73. Poritz LS, Garver KI, Green C, Fitzpatrick L, Ruggiero F, Koltun WA. Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. J Surg Res. 2007;140(1):12–9.

    CAS  PubMed  Google Scholar 

  74. Reuter BK, Pizarro TT. Mechanisms of tight junction dysregulation in the SAMP1/YitFc model of Crohn’s disease-like ileitis. Ann N Y Acad Sci. 2009;1165:301–7.

    CAS  PubMed  Google Scholar 

  75. Kucharzik T, Walsh SV, Chen J, Parkos CA, Nusrat A. Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. Am J Pathol. 2001;159(6):2001–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Weber CR, Nalle SC, Tretiakova M, Rubin DT, Turner JR. Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab Invest. 2008;88(10):1110–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008;40(8):955–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Piazza F, Valens J, Lagasse E, Schindler C. Myeloid differentiation of FdCP1 cells is dependent on Stat5 processing. Blood. 2000;96(4):1358–65.

    CAS  PubMed  Google Scholar 

  79. Snow JW, Abraham N, Ma MC, Herndier BG, Pastuszak AW, Goldsmith MA. Loss of tolerance and autoimmunity affecting multiple organs in STAT5A/5B-deficient mice. J Immunol. 2003;171(10):5042–50.

    CAS  PubMed  Google Scholar 

  80. Shuai K, Liu B. Regulation of JAK–STAT signalling in the immune system. Nat Rev Immunol. 2003;3(11):900–11.

    CAS  PubMed  Google Scholar 

  81. Stoll M, Corneliussen B, Costello CM, Waetzig GH, Mellgard B, Koch WA, et al. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nat Genet. 2004;36(5):476–80.

    CAS  PubMed  Google Scholar 

  82. Nys K, Agostinis P, Vermeire S. Autophagy: a new target or an old strategy for the treatment of Crohn’s disease? Nat Rev Gastroenterol Hepatol. 2013;10(7):395–401.

    CAS  PubMed  Google Scholar 

  83. Massey DC, Parkes M. Genome-wide association scanning highlights two autophagy genes, ATG16L1 and IRGM, as being significantly associated with Crohn’s disease. Autophagy. 2007;3(6):649–51.

    CAS  PubMed  Google Scholar 

  84. Singh SB, Davis AS, Taylor GA, Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science. 2006;313(5792):1438–41.

    CAS  PubMed  Google Scholar 

  85. Lu XC, Tao Y, Wu C, Zhao PL, Li K, Zheng JY, et al. Association between variants of the autophagy related gene – IRGM and susceptibility to Crohn’s disease and ulcerative colitis: a meta-analysis. PLoS One. 2013;8(11):e80602.

    PubMed Central  PubMed  Google Scholar 

  86. Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol. 2008;8(6):458–66.

    CAS  PubMed  Google Scholar 

  87. Brand S. Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut. 2009;58(8):1152–67.

    CAS  PubMed  Google Scholar 

  88. Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol. 2003;3(7):521–33.

    CAS  PubMed  Google Scholar 

  89. Plevy SE, Targan SR. Future therapeutic approaches for inflammatory bowel diseases. Gastroenterology. 2011;140(6):1838–46.

    PubMed  Google Scholar 

  90. Rodriguez-Bores L, Fonseca GC, Villeda MA, Yamamoto-Furusho JK. Novel genetic markers in inflammatory bowel disease. World J Gastroenterol. 2007;13(42):5560–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Ahmad T, Marshall SE, Jewell D. Genetics of inflammatory bowel disease: the role of the HLA complex. World J Gastroenterol. 2006;12(23):3628–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Stokkers PC, Reitsma PH, Tytgat GN, van Deventer SJ. HLA-DR and -DQ phenotypes in inflammatory bowel disease: a meta-analysis. Gut. 1999;45(3):395–401.

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Silverberg MS, Mirea L, Bull SB, Murphy JE, Steinhart AH, Greenberg GR, et al. A population- and family-based study of Canadian families reveals association of HLA DRB1*0103 with colonic involvement in inflammatory bowel disease. Inflamm Bowel Dis. 2003;9(1):1–9.

    PubMed  Google Scholar 

  94. Yang CR, Hsieh SL, Teng CM, Ho FM, Su WL, Lin WW. Soluble decoy receptor 3 induces angiogenesis by neutralization of TL1A, a cytokine belonging to tumor necrosis factor superfamily and exhibiting angiostatic action. Cancer Res. 2004;64(3):1122–9.

    CAS  PubMed  Google Scholar 

  95. Bamias G, Martin 3rd C, Marini M, Hoang S, Mishina M, Ross WG, et al. Expression, localization, and functional activity of TL1A, a novel Th1-polarizing cytokine in inflammatory bowel disease. J Immunol. 2003;171(9):4868–74.

    CAS  PubMed  Google Scholar 

  96. Michelsen KS, Thomas LS, Taylor KD, Yu QT, Mei L, Landers CJ, et al. IBD-associated TL1A gene (TNFSF15) haplotypes determine increased expression of TL1A protein. PLoS One. 2009;4(3):e4719.

    PubMed Central  PubMed  Google Scholar 

  97. Cavallini C, Lovato O, Bertolaso A, Pacelli L, Zoratti E, Zanolin E, et al. The TNF-family cytokine TL1A inhibits proliferation of human activated B cells. PLoS One. 2013;8(4):e60136.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Jones GW, Stumhofer JS, Foster T, Twohig JP, Hertzog P, Topley N, et al. Naive and activated T cells display differential responsiveness to TL1A that affects Th17 generation, maintenance, and proliferation. FASEB J. 2011;25(1):409–19.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Meylan F, Song YJ, Fuss I, Villarreal S, Kahle E, Malm IJ, et al. The TNF-family cytokine TL1A drives IL-13-dependent small intestinal inflammation. Mucosal Immunol. 2011;4(2):172–85.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Young HA, Tovey MG. TL1A: a mediator of gut inflammation. Proc Natl Acad Sci U S A. 2006;103(22):8303–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Kang YJ, Kim WJ, Bae HU, Kim DI, Park YB, Park JE, et al. Involvement of TL1A and DR3 in induction of pro-inflammatory cytokines and matrix metalloproteinase-9 in atherogenesis. Cytokine. 2005;29(5):229–35.

    CAS  PubMed  Google Scholar 

  102. Targan SR. Crohn’s disease: therapeutic implications of disease subtypes. In: Bayless TM, Hanauer S, Hanauer SB, editors. Advanced therapy in inflammatory Bowel disease, vol. 2. 2nd ed. Shelton: PMPH-USA; 2011. p. 633.

    Google Scholar 

  103. Connelly T, Koltun W. The TNFSF15 gene single nucleotide polymorphism rs7848647 is associated with surgical diverticulitis. Ann Surg. 2014;259(6):1132–7.

    PubMed  Google Scholar 

  104. Shih DQ, Targan SR, McGovern D. Recent advances in IBD pathogenesis: genetics and immunobiology. Curr Gastroenterol Rep. 2008;10(6):568–75.

    PubMed Central  PubMed  Google Scholar 

  105. Satsangi J, Silverberg MS, Vermeire S, Colombel JF. The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications. Gut. 2006;55(6):749–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Connelly TM, Koltun WA. The role of genetics in the surgical management of inflammatory bowel disease. Semin Colon Rectal Surg. 2012;23(2):44–50.

    Google Scholar 

  107. Haritunians T, Taylor KD, Targan SR, Dubinsky M, Ippoliti A, Kwon S, et al. Genetic predictors of medically refractory ulcerative colitis. Inflamm Bowel Dis. 2010;16(11):1830–40.

    PubMed Central  PubMed  Google Scholar 

  108. O’Shea JJ, Lahesmaa R, Vahedi G, Laurence A, Kanno Y. Genomic views of STAT function in CD4+ T helper cell differentiation. Nat Rev Immunol. 2011;11(4):239–50. PMID: 21436836.

    PubMed Central  PubMed  Google Scholar 

  109. Budagian V, Bulanova E, Paus R, Bulfone-Paus S. IL-15/IL-15 receptor biology: a guided tour through an expanding universe. Cytokine Growth Factor Rev. 2006;17(4):259–80.

    CAS  PubMed  Google Scholar 

  110. Trachtenberg EA, Yang H, Hayes E, Vinson M, Lin C, Targan SR, et al. HLA class II haplotype associations with inflammatory bowel disease in Jewish (Ashkenazi) and non-Jewish Caucasian populations. Hum Immunol. 2000;61(3):326–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Gazouli M, Mantzaris G, Archimandritis AJ, Nasioulas G, Anagnou NP. Single nucleotide polymorphisms of OCTN1, OCTN2, and DLG5 genes in Greek patients with Crohn’s disease. World J Gastroenterol. 2005;11(47):7525–30.

    CAS  PubMed  Google Scholar 

  112. Koltun WA. A paradigm for the management of complex perineal Crohn’s disease in the anti-TNF era. Semin Colon Rectal Surg. 2006;17:61–7.

    Google Scholar 

  113. Tozer PJ, Burling D, Gupta A, Phillips RK, Hart AL. Review article: medical, surgical and radiological management of perianal Crohn’s fistulas. Aliment Pharmacol Ther. 2011;33(1):5–22.

    CAS  PubMed  Google Scholar 

  114. Greenstein AJ, Lachman P, Sachar DB, Springhorn J, Heimann T, Janowitz HD, et al. Perforating and non-perforating indications for repeated operations in Crohn’s disease: evidence for two clinical forms. Gut. 1988;29(5):588–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Fichera A, Lovadina S, Rubin M, Cimino F, Hurst RD, Michelassi F. Patterns and operative treatment of recurrent Crohn’s disease: a prospective longitudinal study. Surgery. 2006;140(4):649–54.

    PubMed  Google Scholar 

  116. Maconi G, Colombo E, Sampietro GM, Lamboglia F, D’Inca R, Daperno M, et al. CARD15 gene variants and risk of reoperation in Crohn’s disease patients. Am J Gastroenterol. 2009;104(10):2483–91.

    CAS  PubMed  Google Scholar 

  117. Cristaldi M, Sampietro GM, Danelli PG, Bollani S, Bianchi Porro G, Taschieri AM. Long-term results and multivariate analysis of prognostic factors in 138 consecutive patients operated on for Crohn’s disease using “bowel-sparing” techniques. Am J Surg. 2000;179(4):266–70.

    CAS  PubMed  Google Scholar 

  118. De Iudicibus S, Stocco G, Martelossi S, Londero M, Ebner E, Pontillo A, et al. Genetic predictors of glucocorticoid response in pediatric patients with inflammatory bowel diseases. J Clin Gastroenterol. 2011;45(1):e1–7.

    PubMed  Google Scholar 

  119. Griga T, Wilkens C, Wirkus N, Epplen J, Schmiegel W, Klein W. A polymorphism in the macrophage migration inhibitory factor gene is involved in the genetic predisposition of Crohn’s disease and associated with cumulative steroid doses. Hepatogastroenterology. 2007;54(75):784–6.

    CAS  PubMed  Google Scholar 

  120. Freire P, Portela F, Donato MM, Ferreira M, Andrade P, Sofia C. CARD15 mutations and perianal fistulating Crohn’s disease: correlation and predictive value of antibiotic response. Dig Dis Sci. 2011;56(3):853–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter A. Koltun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Connelly, T.M., Koltun, W.A. (2015). Molecular and Genetic Factors in Crohn’s Disease. In: Fichera, A., Krane, M. (eds) Crohn’s Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-14181-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14181-7_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14180-0

  • Online ISBN: 978-3-319-14181-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics