Skip to main content

What is Common for Dihydrogen Bond and H…σ Interaction—Theoretical Analysis and Experimental Evidences

  • Chapter
  • First Online:
Noncovalent Forces

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 19))

Abstract

Two types of the hydrogen bond are described and compared here; the A–H…H–B dihydrogen bond and the A–H…σ interaction. In a case of the dihydrogen bond the H…H contact between the hydrogen atoms characterized by the opposite charges is observed; i.e. between the protonic (A)H and hydridic (B)H hydrogens. For the A–H…σ hydrogen bond the A–H proton donating bond interacts with the σ-electrons of the molecular hydrogen. These interactions are topologically different since for DHB the bond path linking the attractors of H-atoms with the corresponding bond critical point is observed. For the A–H…σ interaction the bond path between the (A)H-atom attractor and the bond critical point of the H–H bond of the molecular hydrogen is observed. Both types of the hydrogen bond are characterized by the significant σ → σ* orbital-orbital interaction, σBH → σAH* in a case of DHB and σHH → σAH* for A–H…σ. There are also evidences that A–H…H–B and A–H…σ may be classified as the hydrogen bonds. The examples of complexes characterized by the mentioned above types of the hydrogen bond are analyzed in this chapter, the theoretical as well as experimental examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richardson TB, de Gala S, Crabtree RH (1995) Unconventional hydrogen bonds: intermolecular B–H…H–N interactions. J Am Chem Soc 117:12875–12876

    Article  CAS  Google Scholar 

  2. Negative values represent binding and interaction energies for stable complexes. For the convenience of discussion the absolute positive values are given in the text

    Google Scholar 

  3. Scheiner S (1994) Ab initio studies of hydrogen bonds: the water dimer paradigm. Annu Rev Phys Chem 45:23–56

    Article  CAS  Google Scholar 

  4. Wessel J, Lee JC Jr, Peris E, Yap GPA, Fortin JB, Ricci JS, Sini G, Albinati A, Koetzle TF, Eisenstein O, Rheingold AL, Crabtree RH (1995) An unconventional intermolecular three-center N–H…H2Re hydrogen bond in crystalline [ReH5(PPh3)3]-indole-C6H6. Angew Chem Int Ed Engl 34:2507–2509

    Article  CAS  Google Scholar 

  5. Crabtree RH, Siegbahn PEM, Eisenstein O, Rheingold AL, Koetzle TFA (1996) A new intermolecular interaction: unconventional hydrogen bonds with element-hydride bonds as proton acceptor. Acc Chem Res 29:348–354

    Article  CAS  Google Scholar 

  6. Crabtree RH, Eisenstein O, Sini G, Peris E (1998) New types of hydrogen bonds. J Organomet Chem 567:7–11

    Article  CAS  Google Scholar 

  7. Custelcean R, Jackson JE (2001) Dihydrogen bonding: structures, energetics, and dynamics. Chem Rev 101:1963–1980

    Article  CAS  Google Scholar 

  8. Robertson KN, Knop O, Cameron TS (2003) C–H…H–C interactions in organoammonium tetraphenylborates: another look at dihydrogen bonds. Can J Chem 81:727–743

    Article  CAS  Google Scholar 

  9. Wolstenholme DJ, Cameron TS (2006) Comparative study of weak interactions in molecular crystals: H–H bonds vs hydrogen bonds. J Phys Chem A 110:8970–8978

    Article  CAS  Google Scholar 

  10. Alkorta I, Elguero J, Foces-Foces C (1996) Dihydrogen bonds (A–H…H–B). Chem Commun 1633–1634

    Google Scholar 

  11. Remko M (1998) Thermodynamics of dihydrogen bonds (A–H…H–B). Mol Phys 94:839–842

    CAS  Google Scholar 

  12. Orlova G, Scheiner S (1998) Intermolecular MH…HR bonding in monohydride Mo and W complexes. J Phys Chem A 102:260–269

    Article  CAS  Google Scholar 

  13. Orlova G, Scheiner S (1998) Intermolecular H…H bonding and proton transfer in semisandwich Re and Ru complexes. J Phys Chem A 102:4813–4818

    Article  CAS  Google Scholar 

  14. Orlova G, Scheiner S, Kar T (1999) Activation and cleavage of H–R bonds through intermolecular H…H bonding upon reaction of proton donors HR with 18-electron transition metal hydrides. J Phys Chem A 103:514–520

    Article  CAS  Google Scholar 

  15. Kulkarni SA (1998) Dihydrogen bonding in main group elements: an ab initio study. J Phys Chem A 102:7704–7711

    Article  CAS  Google Scholar 

  16. Kulkarni SA, Srivastava AK (1999) Dihydrogen bonding in main group elements: a case study of complexes of LiH, BH3, and AlH3 with third-row hydrides. J Phys Chem A 103:2836–2842

    Article  CAS  Google Scholar 

  17. Custelcean R, Jackson JE (1998) Topochemical control of covalent bond formation by dihydrogen bonding. J Am Chem Soc 120:12935–12941

    Article  CAS  Google Scholar 

  18. Matus MH, Anderson KD, Camaioni DM, Autrey ST, Dixon DA (2007) Reliable predictions of the thermochemistry of boron-nitrogen hydrogen storage compounds: BxNxHy, x = 2, 3. J Phys Chem A 111:4411–4421

    Article  CAS  Google Scholar 

  19. Miranda CR, Ceder G (2007) Ab initio investigation of ammonia-borane complexes for hydrogen storage. J Chem Phys 126:184703

    Article  Google Scholar 

  20. Keaton RJ, Blacquiere JM, Baker RT (2007) Base metal catalyzed dehydrogenation of ammonia–borane for chemical hydrogen storage. J Am Chem Soc 129:1844–1845

    Article  CAS  Google Scholar 

  21. Staubitz A, Besora M, Harvey JN, Manners I (2008) Computational analysis of amine-borane adducts as potential hydrogen storage materials with reversible hydrogen uptake. Inorg Chem 47:5910–5918

    Article  CAS  Google Scholar 

  22. Custelcean R, Jackson JE (2000) Topochemical dihydrogen to covalent bonding transformation in LiBH4·TEA: a mechanistic study. J Am Chem Soc 122:5251–5257

    Article  CAS  Google Scholar 

  23. Custelcean R, Vlassa M, Jackson JE (2000) Toward crystalline covalent solids: crystal-to-crystal dihydrogen to covalent bonding transformation in NaBH4 · THEC. Angew Chem Int Ed Engl 39:3299–3302

    Google Scholar 

  24. Kenward AL, Piers WE (2008) Heterolytic H2 activation by nonmetals. Angew Chem Int Ed Engl 47:38–41

    Article  CAS  Google Scholar 

  25. Filippov OA, Filin AM, Tsupreva VN, Belkova NV, Lledós A, Ujaque G, Epstein LM, Shubina ES (2006) Proton-transfer and H2-elimination reactions of main-group hydrides EH4—(E = B, Al, Ga) with alcohols. Inorg Chem 45:3086–3096.

    Google Scholar 

  26. Kubas GJ (2001) Metal Dihydrogen and σ-bond complexes—structure, theory, and reactivity. Kluwer Academic/Plenum Publishers: New York

    Google Scholar 

  27. Crabtree RH (2005) The organometallic chemistry of the transition metals. Wiley, Hoboken

    Book  Google Scholar 

  28. Alcaraz G, Grellier M, Sabo-Etienne S (2009) Bis σ-bond dihydrogen and borane ruthenium complexes: bonding nature, catalytic applications, and reversible hydrogen release. Acc Chem Res 42:1640–1649

    Article  CAS  Google Scholar 

  29. Epstein LM, Shubina ES (2002) New types of hydrogen bonding in organometallic chemistry. Coord Chem Rev 231:165–181

    Article  CAS  Google Scholar 

  30. Belkova NV, Shubina ES, Epstein LM (2005) Diverse world of unconventional hydrogen bonds. Acc Chem Res 38:624–631

    Article  CAS  Google Scholar 

  31. de Oliveira BG (2013) Structure, energy, vibrational spectrum, and Bader’s analysis of π…H hydrogen bonds and H−δ…H dihydrogen bonds. Phys Chem Chem Phys 15:37–79

    Article  Google Scholar 

  32. Grabowski SJ (2013) Dihydrogen bond and X–H…σ interaction as sub-classes of hydrogen bond. J Phys Org Chem 26:452–459

    Article  CAS  Google Scholar 

  33. Epstein LM, Belkova NV, Shubina ES (2001) Dihydrogen bonded complexes and proton transfer to hydride ligands by spectral (IR, NMR) studies. In: Peruzzini M, Poli R (eds) Recent advances in hydride chemistry (Chapter). Elsevier, Amsterdam pp 391–418

    Google Scholar 

  34. Grabowski SJ, Leszczynski J (2005) Is a dihydrogen bond a unique phenomenon? Chapter in vol 9, a book series: computational chemistry: reviews of current trends. World Scientific Publishing Co: Singapore, pp 195–235

    Google Scholar 

  35. Grabowski SJ, Leszczynski J (2009) Dihydrogen bonds: novel feature of hydrogen bond interactions. In: Leszczynski J, Shukla M (eds) Practical aspects of computational chemistry, methods, concepts and applications (Chapter). Springer: Heidelberg Dordrecht, London, New York

    Google Scholar 

  36. Bakhmutov VI (2008) Dihydrogen bonds, principles, experiments, and applications. John Wiley & Sons, Inc.: Hoboken, New Jersey

    Google Scholar 

  37. Klooster WT, Koetzle TF, Siegbahn PEM, Richardson TB, Crabtree RH (1999) Study of the N–H…H–B Dihydrogen bond including the crystal structure of bh3nh3 by neutron diffraction. J Am Chem Soc 121:6337–6343

    Article  CAS  Google Scholar 

  38. Zachariasen WH, Mooney RCL (1934) The structure of hypophosphite group as determined from the crystal lattice of ammonium hypophosphite. J Chem Phys 2:34–37

    Article  CAS  Google Scholar 

  39. Burg AB (1964) Enhancement of P–H bonding in a phosphine monoborane. Inorg Chem 3:1325–1327

    Article  CAS  Google Scholar 

  40. Titov LV, Makarova MD, Rosolovskii VY (1968) Guanidinium borohydride. Dokl Akad Nauk 180:381–382

    Google Scholar 

  41. Grabowski SJ, Krygowski TM (1999) The proton transfer path for C=O…H–O systems modelled from crystal structure data. Chem Phys Lett 305:247–250

    Article  CAS  Google Scholar 

  42. Sobczyk L, Grabowski SJ, Krygowski TM (2005) Interrelation between H-bond and Pi-electron delocalization. Chem Rev 105:3513–3560

    Article  CAS  Google Scholar 

  43. Grabowski SJ (2014) Tetrel bond—σ-hole bond as a preliminary stage of the SN reaction. Phys Chem Chem Phys 16:1824–1834

    Article  CAS  Google Scholar 

  44. Brown MP, Heseltine RW (1968) Co-ordinated BH3, as a proton acceptor group in hydrogen bonding. Chem Commun 23:1551–1552

    Google Scholar 

  45. Brown MP, Heseltine RW, Smith PA, Walker PJ (1970) An infrared study of coordinated BH3 and BH2 groups as proton acceptors in hydrogen bonding. J Chem Soc A 410–414

    Google Scholar 

  46. Stevens RC, Bau R, Milstein D, Blum O, Koetzle TF (1990) Concept of the H(δ+)…H(δ−) interaction. A low-temperature neutron diffraction study of cis- [IrH (OH)(PMe3)4] PF6. J Chem Soc Dalton Trans 1429–1432

    Google Scholar 

  47. Milstein D, Calabrese JC, Williams ID (1986) Formation, structures, and reactivity of cis-hydroxy-, cis-methoxy-, and cis-mercaptoiridium hydrides. Oxidative addition of water to Ir(I). J Am Chem Soc 108:6387–6389

    Article  CAS  Google Scholar 

  48. Lough AJ, Park S, Ramachandran R, Morris RH (1994) Switching on and off a new intramolecular hydrogen-hydrogen interaction and the heterolytic splitting of dihydrogen. Crystal and molecular structure of [Ir({H(ηl-SC5H4NH) }2(PCy3) 2]BF4.2.7CH2C12. J Am Chem Soc 116:8356–8357

    Google Scholar 

  49. Gusev DG, Lough AJ, Morris RH (1998) New polyhydride anions and proton-hydride hydrogen bonding in their ion pairs. J Am Chem Soc 120:13138–13147

    Article  CAS  Google Scholar 

  50. Ramachandran R, Morris RH (1994) A new type of intramolecular H…H…H interaction involving N–H…H(Ir)…H–N atoms. Crystal and molecular structure of [IrH(ηl-SC5H4NH) 22-SC5H4N) (PCy3)]BF4.0.72CH2C12. J Chem Soc Chem Commun 2201–2202

    Google Scholar 

  51. Lee JC, Pens E, Rheingold AL, Crabtree RH (1994) An unusual type of H…H interaction: Ir–H…H–O and Ir–H…H–N hydrogen bonding and its involvement in σ-bond metathesis. J Am Chem Soc 116:11014–11019

    Article  CAS  Google Scholar 

  52. Lee JC, Rheingold AL, Muller B, Pregosin PS, Crabtree RH (1994) Complexation of an amide to iridium via an iminol tautomer and evidence Ir–H…H–O hydrogen bond. J Chem Soc Chem Commun 1021–1022

    Google Scholar 

  53. Belkova NV, Shubina ES, Gutsul EI, Epstein LM, Eremenko IL, Nefedov SE (2000) Structural and energetic aspects of hydrogen bonding and proton transfer to ReH2(CO)(NO)(PR3)2 and ReHCl(CO)(NO)(PMe3)2 by IR and X-ray studies. J Organomet Chem 610:58–70

    Article  CAS  Google Scholar 

  54. Allen FH (2002) The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Cryst B58:380–388

    Article  CAS  Google Scholar 

  55. Liu Q, Hoffmann R (1995) Theoretical aspects of a novel mode of hydrogen-hydrogen bonding. J Am Chem Soc 117:10108–10112

    Article  CAS  Google Scholar 

  56. Siegbahn PEM, Blomberg MRA, Svensson M (1994) PCI-X, a parametrized correlation method containing a single adjustable parameter X. Chem Phys Lett 223:35–45

    Article  CAS  Google Scholar 

  57. Siegbahn PEM, Svensson M, Boussard PJE (1995) First row bench mark tests of the PCI-X scheme. J Chem Phys 102:5377–5386

    Article  CAS  Google Scholar 

  58. Grabowski SJ (1999) Study of correlations for dihydrogen bonds by quantum-chemical calculations. Chem Phys Lett 312:542–547

    Article  CAS  Google Scholar 

  59. Grabowski SJ (2000) High-level ab initio calculations of dihydrogen-bonded complexes. J Phys Chem A 104:5551–5557

    Article  CAS  Google Scholar 

  60. Kitaura K, Morokuma K (1976) A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation. Int J Quantum Chem 10:325–340

    Article  CAS  Google Scholar 

  61. Cybulski SM, Chałasiński G, Moszyński R (1990) On decomposition of MP2 supermolecular interaction energy and basis set effects. J Chem Phys 92:4357–4363

    Article  CAS  Google Scholar 

  62. Cybulski H, Pecul M, Sadlej J (2003) Characterization of dihydrogen-bonded D–H…H–A complexes on the basis of infrared and magnetic resonance spectroscopic parameters. J Chem Phys 119:5094–5104

    Article  CAS  Google Scholar 

  63. Kar T, Scheiner S (2003) Comparison between hydrogen and dihydrogen bonds among H3BNH3, H2BNH2, and NH3. J Chem Phys 119:1473–1482

    Article  CAS  Google Scholar 

  64. Alkorta I, Elguero J, Mó O, Yánez M, Del Bene JE (2002) Ab Initio study of the structural, energetic, bonding, and IR spectroscopic properties of complexes with dihydrogen bonds. J Phys Chem A 106:9325–9330

    Article  CAS  Google Scholar 

  65. Del Bene JE, Perera SA, Bartlett RJ, Alkorta I, Elguero J, Mó O, Yánez M (2002) One-bond (1dJH–H) and three-bond (3dJX–M) spin-spin coupling constants across X–H…H–M dihydrogen bonds. J Phys Chem A 106:9331–9337

    Google Scholar 

  66. Grabowski SJ, Robinson TL, Leszczynski J (2004) Strong dihydrogen bonds—ab initio and atoms in molecules study. Chem Phys Lett 386:44–48

    Article  CAS  Google Scholar 

  67. Sokalski WA, Roszak S, Pecul K (1988) An efficient procedure for decomposition of the SCF interaction energy into components with reduced basis set dependence. Chem Phys Lett 153:153–159

    Article  CAS  Google Scholar 

  68. Sokalski WA, Roszak S (1991) Efficient techniques for the decomposition of intermolecular interaction energy at SCF level and beyond. J Mol Struct (Theochem) 234:387–400

    Article  Google Scholar 

  69. Grabowski SJ, Sokalski WA, Leszczynski J (2005) How short can the H…H intermolecular contact be? New findings that reveal the covalent nature of extremely strong interactions. J Phys Chem A 109:4331–4341

    Article  CAS  Google Scholar 

  70. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  71. Schmidt MS, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comp Chem 14:1347–1363

    Google Scholar 

  72. Grabowski SJ, Sokalski WA, Dyguda E, Leszczynski J (2006) Quantitative classification of covalent and noncovalent H-bonds. J Phys Chem B 110:6444–6446

    Article  CAS  Google Scholar 

  73. Grabowski SJ (2009) Covalent character of hydrogen bonds enhanced by π-electron delocalization. Croat Chem Acta 82:185–192

    CAS  Google Scholar 

  74. Desiraju GR (2002) Hydrogen bridges in crystal engineering: interactions without borders. Acc Chem Res 35:565–573

    Article  CAS  Google Scholar 

  75. Grabowski SJ, Sokalski WA, Leszczynski J (2007) Wide spectrum of H…H interactions: van der Waals contacts, dihydrogen bonds and covalency. Chem Phys 337:68–76

    Article  CAS  Google Scholar 

  76. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer-Verlag: Berlin

    Book  Google Scholar 

  77. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press: New York

    Google Scholar 

  78. Hobza P, Havlas Z (2000) Blue-shifting hydrogen bonds. Chem Rev 100:4253–4264

    Article  CAS  Google Scholar 

  79. Feng Y, Zhao S-W, Liu L, Wang J-T, Li X-S, Guo Q-X (2004) Blue-shifted dihydrogen bonds. J Phys Org Chem 17:1099–1106

    Article  CAS  Google Scholar 

  80. Yang Y, Zhang W (2007) Theoretical study of N–H…H–B blue-shifted dihydrogen bonds. J Mol Struct (Theochem) 814:113–117

    Article  CAS  Google Scholar 

  81. Yu W, Lin Z, Huang Z (2006) Coexistence of dihydrogen, blue and red-shifting hydrogen bonds in an ultrasmall system: valine. ChemPhysChem 7:828–830

    Article  CAS  Google Scholar 

  82. Trung NT, Hue TT, Nguyen MT, Zeegers-Huyskens T (2008) Theoretical study of the interaction between HNZ (Z = O, S) and H2XNH2 (X = B, Al). Conventional and dihydrogen bonds. Phys Chem Chem Phys 10:5105–5113

    Article  CAS  Google Scholar 

  83. Grabowski SJ (2011) What is the covalency of hydrogen bonding? Chem Rev 11:2597–2625

    Article  Google Scholar 

  84. Weinhold F, Landis C (2005) Valency and bonding, a natural bond orbital donor—acceptor perspective. Cambridge University Press: Cambridge, UK

    Google Scholar 

  85. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  86. Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003) Electronic basis of improper hydrogen bonding: a subtle balance of hyperconjugation and rehybridization. J Am Chem Soc 125:5973–5987

    Article  CAS  Google Scholar 

  87. Weinhold F, Klein R (2012) What is a hydrogen bond? Mutually consistent theoretical and experimental criteria for characterizing H-bonding interactions. Mol Phys 110:565–579

    Article  CAS  Google Scholar 

  88. Alkorta I, Elguero J, Grabowski SJ (2008) How to determine whether intramolecular H…H interactions can be classified as dihydrogen bonds. J Phys Chem A 112:2721–2727

    Article  CAS  Google Scholar 

  89. Grabowski SJ (2011) Halogen bond and its counterparts: Bent’s rule explains the formation of nonbonding interactions. J Phys Chem A 115:12340–12347

    Article  CAS  Google Scholar 

  90. Grabowski SJ (2012) QTAIM characteristics of halogen bond and related interactions. J Phys Chem A 116:1838–1845

    Article  CAS  Google Scholar 

  91. Grabowski SJ (2013) Non-covalent interactions—QTAIM and NBO analysis. J Mol Model 19:4713–4721

    Article  CAS  Google Scholar 

  92. Bent HA (1961) An appraisal of valence-bond structures and hybridization in compounds of the first-row elements. Chem Rev 61:275–311

    Article  CAS  Google Scholar 

  93. Grabowski SJ (2011) Red- and blue-shifted hydrogen bonds: the Bent rule from quantum theory of atoms in molecules perspective. J Phys Chem A 115:12789–12799

    Google Scholar 

  94. Bader RFW (1985) Atoms in molecules. Acc Chem Res 18:9–15

    Article  CAS  Google Scholar 

  95. Bader RFW (1990) Atoms in molecules, a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  96. Bader RFW (2009) Bond paths are not chemical bonds. J Phys Chem A 113:10391–10396

    Google Scholar 

  97. Grabowski SJ, Ugalde JM (2010) Bond paths show preferable interactions: ab initio and QTAIM studies on the X–H· · ·π hydrogen bond. J Phys Chem A 114:7223–7229

    Article  CAS  Google Scholar 

  98. Koch U, Popelier PLA (1995) Characterization of C–H–O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  99. Popelier PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102:1873–1878

    Article  CAS  Google Scholar 

  100. Cramer CJ, Gladfelter WL (1997) Ab initio characterization of [H3N.BH3]2, [ H3N.A1H3]2, and [H3N.GaH3]2. Inorg Chem 36:5358–5362

    Article  CAS  Google Scholar 

  101. Cremer D, Kraka E (1984) A description of the chemical-bond in terms of local properties of electrodensity and energy. Croat Chem Acta 57:1259–1281

    Google Scholar 

  102. Jenkins S, Morrison I (2000) The chemical character of the intermolecular bonds of seven phases of ice as revealed by ab initio calculation of electron densities. Chem Phys Lett 317:97–102

    Article  CAS  Google Scholar 

  103. Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122:1154–11161

    Article  Google Scholar 

  104. Domagała M, Grabowski SJ (2009) X–H…π and X–H…N hydrogen bonds—acetylene and hydrogen cyanide as proton acceptors. Chem Phys 363:42–48

    Article  Google Scholar 

  105. Urban J, Roszak S, Leszczynski J (2001) Shellvation of the ammonium cation by molecular hydrogen: a theoretical study. Chem Phys Lett 346:512–518

    Article  CAS  Google Scholar 

  106. Szymczak JJ, Grabowski SJ, Roszak S, Leszczynski J (2004) H…σ interactions—an ab initio and “atoms in molecules” study. Chem Phys Lett 393:81–86

    Article  CAS  Google Scholar 

  107. Grabowski SJ, Lipkowski P (2011) Characteristics of X–H…π interactions: ab initio and QTAIM studies. J Phys Chem A 115:4765–4773.

    Article  CAS  Google Scholar 

  108. Grabowski SJ, Sokalski WA, Leszczynski J (2006) Can H…σ, π…H+…σ and σ…H+…σ interactions be classified as H-bonded? Chem Phys Lett 432:33–39

    Article  CAS  Google Scholar 

  109. Grabowski SJ (2007) Hydrogen bonds with π and σ electrons as the multicenter proton acceptors: high level ab initio calculations. J Phys Chem A 111:3387–3393

    Article  CAS  Google Scholar 

  110. Grabowski SJ, Alkorta I, Elguero J (2013) Complexes between dihydrogen and amine, phosphine, and arsine derivatives. Hydrogen bond versus pnictogen interaction. J Phys Chem A 117:3243–3251

    Article  CAS  Google Scholar 

  111. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Definition of the hydrogen bond. Pure Appl Chem 83:1637–1641

    CAS  Google Scholar 

  112. Jucks KW, Miller RE (1987) Infrared Stark spectroscopy on the hydrogen-HF binary complex. J Chem Phys 87:5629–5633

    Google Scholar 

  113. Moore DT, Miller RE (2003) Dynamics of hydrogen–HF complexes in helium nanodroplets. J Chem Phys 118:9629–9636

    Article  CAS  Google Scholar 

  114. Moore DT, Miller RE (2003) Solvation of HF by molecular hydrogen: helium nanodroplet vibrational spectroscopy. J Phys Chem A 107:10805–10812

    Article  CAS  Google Scholar 

  115. Moore DT, Miller RE (2004) Rotationally resolved infrared laser spectroscopy of (H2)n–HF and (D2)n–HF (n = 2–6) in helium nanodroplets. J Phys Chem A 108:1930–1937

    Article  CAS  Google Scholar 

  116. Bieske EJ, Nizkorodov SA, Bennett FR, Maier JP (1995) The infrared spectrum of the H2–HCO1 complex. J Chem Phys 102:5152–5164

    Article  CAS  Google Scholar 

  117. Lipkowski P, Grabowski SJ, Leszczynski J (2006) Properties of the halogen-hydride interaction: an ab initio and “Atoms in Molecules” analysis. J Phys Chem A 110:10296–10302

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support comes from Eusko Jaurlaritza (GIC IT-588-13) and the Spanish Office for Scientific Research (CTQ 2012-38496-C05-04). Technical and human support provided by Informatikako Zerbitzu Orokora—Servicio General de Informatica de la Universidad del Pais Vasco (SGI/IZO-SGIker UPV/EHU), Ministerio de Ciencia e Innovación (MICINN), Gobierno Vasco Eusko Jaurlanitza (GV/EJ), European Social Fund (ESF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sławomir J. Grabowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grabowski, S. (2015). What is Common for Dihydrogen Bond and H…σ Interaction—Theoretical Analysis and Experimental Evidences. In: Scheiner, S. (eds) Noncovalent Forces. Challenges and Advances in Computational Chemistry and Physics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-14163-3_7

Download citation

Publish with us

Policies and ethics