Skip to main content

Hydrogen Bonds Involving Radical Species

  • Chapter
  • First Online:
Noncovalent Forces

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 19))

Abstract

In this chapter, we focused on the structures, patterns, energies, and nature of hydrogen bonds involving radicals, such as H3C, OH, BH2, and BeH, based on the fact that hydrogen-bonded complexes involving radicals may be formed in the related reactions and processes, and are useful for understanding their mechanisms. Theses radicals as the proton donor and acceptor may participate in the formation of different types of hydrogen bonds, including single-electron hydrogen bonds with the single electron of radicals as the proton acceptor, dihydrogen bonds with the hydridic hydrogen of radicals as the proton acceptor, conventional hydrogen bonds with the lone-pair electron of radicals as the proton acceptor or with the proton of radicals as the proton donor. In addition, a covalent interaction is also formed between radicals and the other molecule. The formation of these interactions was understood from the view of HOMO and LUMO of radicals, and their nature was analyzed by the energy decomposition scheme, showing similar nature in most cases with conventional hydrogen bonds. We paid a particular attention to the cooperative effect of single-electron hydrogen bond with other types of interactions as well as the competition among different types of interactions involving radical species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wallington TJ, Dagaut P, Kurylo MJ (1992) Chem Rev 92:667–710

    Google Scholar 

  2. Calvert JG, Lazrus A, Kok GL, Heikes BG, Walega JG, Lind J, Cantrell CA (1985) Nature 317:27–35

    Google Scholar 

  3. Jeffrey GA (1997) An introduction to hydrogen bonding; Oxford University Press: New York

    Google Scholar 

  4. de Visser SP Shaik S (2003) J Am Chem Soc 125:7413–7424

    Google Scholar 

  5. Lucarini M, Mugnaini V, Pedulli GF, Guerra M (2003) J Am Chem Soc 125:8318–8329

    Google Scholar 

  6. Wang BQ, Li ZR, Wu D, Hao XY, Li RJ, Sun CC (2003) Chem Phys Lett 375:91–95

    Google Scholar 

  7. Sander W, Roy S, Polyak I, Ramirez-Anguita JM, Sanchez-Garcia E (2012) J Am Chem Soc 134:8222–8230

    Google Scholar 

  8. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Scalmani G, Cossi M, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, KleneMLX, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Gonzalez C, Wong MW, Pittsburgh PA, Pople JA (2009) Gaussian 09, revision A02. Gaussian Inc, Wallingford

    Google Scholar 

  9. Jacox ME (1979) Chem Phys 42:133–148

    Google Scholar 

  10. Johnson GL, Andrews L (1980) J Am Chem Soc 102:5736–5741

    Google Scholar 

  11. Misochko EY, Benderskii VA, GoldschlegerAU, Akimov AV, Shestakov AF (1995) J Am Chem Soc 117:11997–11998

    Google Scholar 

  12. Tachikawa H (1998) J Phys Chem A 102:7065–7069

    Google Scholar 

  13. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Google Scholar 

  14. Chen Y, Tschuikow-Roux E, Rauk A (1991) J Phys Chem 95:9832–9836

    Google Scholar 

  15. Raghavendra B, Arunan E (2007) J Phys Chem A 111:9699–9706

    Google Scholar 

  16. Rudić S, Merritt JM, Miller RE (2006) J Chem Phys 124:104305

    Google Scholar 

  17. Solimannejad M, Alikhani ME (2005) Chem Phys Lett 406:351–354

    Google Scholar 

  18. Qi XJ, Liu L, Fu Y, Guo QX (2005) Struct Chem 16:347–353

    Google Scholar 

  19. Zhang B, Shiu W, Liu K (2005) J Phys Chem A 109:8983–8988

    Google Scholar 

  20. Rudic S, Merritt JM, Miller RE (2009) Phys Chem Chem Phys 11:5345–5352

    Google Scholar 

  21. Hashimoto T, Iwata S (2002) J Phys Chem A 106:2652–2658

    Google Scholar 

  22. An XL, Liu HP, Li QZ, Gong BA, Cheng JB (2008) J Phys Chem A 112:5258–5263

    Google Scholar 

  23. Li QZ, Zhu HJ, An XL, Gong BA, Cheng JB (2009) Int J Quantum Chem 109:605–611

    Google Scholar 

  24. Li QZ, An XL, Gong BA, Cheng JB (2008) J Mol Struct Theochem 866:11–14

    Google Scholar 

  25. Hammerum S (2009) J Am Chem Soc 131:8627–8635

    Google Scholar 

  26. Spiegel DA, Wiberg KB, Schacherer LN, Medeiros MR, Wood JL (2005) J Am Chem Soc 127:12513–12515

    Google Scholar 

  27. Pozzi D, Scanlan EM, Renaud P (2005) J Am Chem Soc 127:14204–14205

    Google Scholar 

  28. Gil A, Sodupe M, Bertran (2004) Chem Phys Lett 395:27–32

    Google Scholar 

  29. Solimannejad M, Alkorta I (2006) J Phys Chem A 110:10817–10821

    Google Scholar 

  30. Wang WJ, Li QZ (2011) Comput Theor Chem 966:128–133

    Google Scholar 

  31. Li QZ, Li R, Yi SC, Li WZ, Cheng JB (2012) Struct Chem 23:411–416

    Google Scholar 

  32. Ohshima Y, Sato K, Sumiyoshi Y, Endo Y (2005) J Am Chem Soc 127:1108–1109

    Google Scholar 

  33. Aloisio S, Francisco JS (2000) Acc Chem Res 33:825–830

    Google Scholar 

  34. Langford VS, McKinley AJ, Quickenden TI (2000) Acc Chem Res 33:665–671

    Google Scholar 

  35. Hamad S, Lago S, Mejias JA (2002) J Phys Chem A 106:9104–9113

    Google Scholar 

  36. Lai CH, Chou PT (2007) J Comput Chem 28:1357–1363

    Google Scholar 

  37. Jing B, Li QZ, Gong BA, Cheng JB, Li WZ, Liu ZB (2010) Mol Phys 108:1655–1664

    Google Scholar 

  38. Jing B, Li QZ, Gong BA, Liu ZB, Li WZ, Cheng JB, Sun JZ (2011) Mol Phys 109:831–838

    Google Scholar 

  39. Yamaguchi M (2011) J Phys Chem A 115:14620–14628

    Google Scholar 

  40. Chipman DM (2011) J Phys Chem A 115:1161–1171

    Google Scholar 

  41. Vande J, Sprik M (2005) Phys Chem Chem Phys 7:1363–1367

    Google Scholar 

  42. Gao Y, Alecu IM, Hsieh PC, Morgan BP, Marshall P, Krasnoperov LN (2006) J Phys Chem A 110:6844–6850

    Google Scholar 

  43. Xu ZF, Lin MC (2007) J Phys Chem A 111:584–590

    Google Scholar 

  44. Sander SP, Friedl RR, Yung YL (1989) Science 245:1095–1098

    Google Scholar 

  45. McKeachie JR, Appel MF, Kirchner U, Schindler RN, Benter T (2004) J Phys Chem B 108:16786–16797

    Google Scholar 

  46. Galvez O, Gomez PC (2007) Chem Phys Lett 448:16–23

    Google Scholar 

  47. Custelcean R, Jackson JE (2001) Chem Rev 101:1963–1980

    Google Scholar 

  48. Li QZ, Kou H, Li R, Li WZ, Cheng JB (2011) Comput Theor Chem 976:83–87

    Google Scholar 

  49. Du S, Francisco JS (2009) J Chem Phys 130:124304

    Google Scholar 

  50. Solimannejad M, Ghafari S (2013) Struct Chem 24:1493–1498

    Google Scholar 

  51. Solimanejad M, Scheiner S (2011) Int J Quantum Chem 111:3196–3200

    Google Scholar 

  52. Su PF, Li H (2009) J Chem Phys 131:014102

    Google Scholar 

  53. Schmidt MW, Baldridge KK, Boalz JA, Elbert ST, Gorden MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA Jr (1993) J Comput Chem 14:1347–1363

    Google Scholar 

  54. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757

    Google Scholar 

  55. Li QZ, An XL, Luan F, Li WZ, Gong BA, Cheng JB, Sun JZ (2008) J Chem Phys 128:154102

    Google Scholar 

  56. Li QZ, Lin QQ, Li WZ, Cheng JB, Gong BA, Sun JZ (2008) ChemPhysChem 9:2265–2269

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Outstanding Youth Natural Science Foundation of Shandong Province (JQ201006) and the Program for New Century Excellent Talents in University (NCET-2010-0923).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Zhong Li or Hai-Bei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, QZ., Li, HB. (2015). Hydrogen Bonds Involving Radical Species. In: Scheiner, S. (eds) Noncovalent Forces. Challenges and Advances in Computational Chemistry and Physics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-14163-3_5

Download citation

Publish with us

Policies and ethics