Skip to main content

Hydrogen Bonds Involving Sulfur: New Insights from ab Initio Calculations and Gas Phase Laser Spectroscopy

  • Chapter
  • First Online:
Noncovalent Forces

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 19))

Abstract

The hydrogen bonds involving sulfur (sulfur center hydrogen bonds; SCHBs) are generally regarded as weak H-bonds in comparison with the conventional N–H· · · O, O–H· · · O, N–H· · · N and O–H· · · N H-bonds. One of the reasons being considered for this is the smaller electronegativity of S than O or N. However, recent high resolution laser spectroscopy in combination with quantum chemical calculations reveals that SCHBs can be as strong as conventional H-bonds. Surprisingly, in the case of methionine containing dipeptides the amide-N–H· · · S H-bonds are even stronger than amide-N–H· · · O = C H-bonds. Sulfur is not only a potential H-bond acceptor, but the S–H group is also a very good H-bond donor and capable of forming a variety of H-bonds. For example, the S–H· · · π H-bond between H2S and indole/benzene is found to be the strongest H-bond among O–H· · · π, O–H· · · π, and C–H· · · π H-bonds. In general the SCHBs are dispersive in nature. This chapter details about few SCHB systems, many more systems need to be studied extensively and carefully to unravel many facts and facets about SCHBs. The major challenge for the experimentalists is to accurately determine the intra- and intermolecular H-bond energies and for the theoreticians to propose a universal H-bond descriptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Defining the hydrogen bond: an account (IUPAC Technical Report). Pure Appl Chem 83(8):1619–1636

    CAS  Google Scholar 

  2. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaca

    Google Scholar 

  3. Pimentel GC, McClellan AL (1960) The hydrogen bond. W. H. Freeman and Company, New York

    Google Scholar 

  4. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer-Verlag, Berlin

    Google Scholar 

  5. Jeffrey G A (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  6. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New York

    Google Scholar 

  7. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, New York

    Google Scholar 

  8. Grabowski SJ (2006) Hydrogen bonding—new insights challenges and advances in computational chemistry and physics, vol 3, 1st edn. Springer, New York

    Google Scholar 

  9. Gilli G, Gilli P (2009) The nature of the hydrogen bond: outline of a comprehensive hydrogen bond theory. Oxford University Press, New York

    Google Scholar 

  10. Hobza P, Müller-Dethlefs K (2010) Non-covalent interactions: theory and experiment. Royal Society of Chemistry, Cambridge

    Google Scholar 

  11. Dunitz JD, Taylor R (1997) Organic fluorine hardly ever accepts hydrogen bonds. Chem Eur J 3:89–98

    CAS  Google Scholar 

  12. Dunitz JD (2004) Organic fluorine: odd man out. ChemBioChem 5:614–621

    CAS  Google Scholar 

  13. Frey JA, Leist R, Leutwyler S (2006) Hydrogen Bonding of the Nucleobase Mimic 2-Pyridone to Fluorobenzenes: an ab Initio Investigation. J Phys Chem A 110:4188–4195

    CAS  Google Scholar 

  14. Toth G, Bowers SG, Truong AP, Probst G (2007) The role and significance of unconventional hydrogen bonds in small molecule recognition by biological receptors of pharmaceutical relevance. Curr Pharm Des 13:3476–3493

    CAS  Google Scholar 

  15. Zhu Y-Y, Yi H-P, Li C, Jiang X-K, Li Z-T (2008) The N–H···X (X = Cl, Br, and I) hydrogen-bonding pattern in aromatic amides: a crystallographic and 1H NMR study. Cryst Growth Des 8:1294–1300

    CAS  Google Scholar 

  16. Koller AN, Bozilovic J, Engels JW, Gohlke H (2010) Aromatic N versus aromatic F: bioisosterism discovered in RNA base pairing interactions leads to a novel class of universal base analogs. Nucleic Acids Res 38:3133–3146

    CAS  Google Scholar 

  17. Gregoret LM, Rader SD, Fletterick RJ, Cohen FE (1991) Hydrogen bonds involving sulfur atoms in proteins. Proteins 9(2):99–107

    CAS  Google Scholar 

  18. Platts JA, Howard ST, Bracke BRF (1996) Directionality of hydrogen bonds to sulfur and oxygen. J Am Chem Soc 118(11):2726–2733

    CAS  Google Scholar 

  19. Allen FH, Bird CM, Rowland RS, Raithby PR (1997) Hydrogen-bond acceptor and donor properties of divalent sulfur (Y–S–Z and R–S–H). Acta Crystallogr, Sect B: Struct Sci 53:696–701

    Google Scholar 

  20. Sutor DJ (1963) Evidence for existence of C–H· · · O hydrogen bonds in crystals. J Chem Soc (FEB) 1105–1110

    Google Scholar 

  21. Taylor R, Kennard O (1982) Crystallographic evidence for the existence of CH· · · O, CH· · · N and CH· · · Cl hydrogen bonds. J Am Chem Soc 104(19):5063–5070

    CAS  Google Scholar 

  22. Brandl M, Weiss MS, Jabs A, Suhnel J, Hilgenfeld R (2001) C–H· · · π -interactions in proteins. J Mol Biol 307(1):357–377

    CAS  Google Scholar 

  23. Scheiner S, Kar T, Pattanayak J (2002) Comparison of various types of hydrogen bonds involving aromatic amino acids. J Am Chem Soc 124(44):13257–13264

    CAS  Google Scholar 

  24. Manikandan K, Ramakumar S (2004) The occurrence of C–H· · · O hydrogen bonds in alpha-helices and helix termini in globular proteins. Proteins 56(4):768–781

    CAS  Google Scholar 

  25. Sarkhel S, Desiraju GR (2004) N–H· · · O, O–H· · · O, and C–H· · · O hydrogen bonds in protein-ligand complexes: strong and weak interactions in molecular recognition. Proteins 54(2):247–259

    CAS  Google Scholar 

  26. Mani D, Arunan E (2013) The X-C· · · Y (X = O/F, Y = O/S/F/Cl/Br/N/P) ‘carbon bond’ and hydrophobic interactions. Phys Chem Chem Phys 15:14377–14383

    CAS  Google Scholar 

  27. Bauza A, Mooibroek TJ, Frontera A (2014) Influence of ring size on the strength of carbon bonding complexes between anions and perfluorocycloalkanes. Phys Chem Chem Phys. Ahead of Print. doi:10.1039/c4cp01983k

    Google Scholar 

  28. Thomas SP, Pavan MS, Guru Row TN (2014) Experimental evidence for ‘carbon bonding’ in the solid state from charge density analysis. Chem Commun 50:49–51

    CAS  Google Scholar 

  29. Adman E, Watenpaugh KD, Jensen LH (1975) NH· · · S Hydrogen bonds in Peptococcus aerogenes ferredoxin, clostridium pasteurianum rubredoxin, and chromatium high potential iron protein. Proc Nat Acad Sci U S A 72(12):4854–4858

    CAS  Google Scholar 

  30. Morgan RS, Tatsch CE, Gushard RH, McAdon JM, Warme PK (1978) Chains of alternating sulfur and p-bonded atoms in 8 small proteins. Int J Pept Protein Res 11(3):209–217

    CAS  Google Scholar 

  31. Reid KSC, Lindley PF, Thornton JM (1985) Sulfur-aromatic interactions in proteins. FEBS Lett 190(2):209–213

    CAS  Google Scholar 

  32. Li HM, Thomas GJ (1991) Cysteine conformation and sulfhydryl interactions in proteins and viruses.1. Correlation of the Raman S–H B and with hydrogen-bonding and intramolecular geometry in model compounds. J Am Chem Soc 113(2):456–462

    CAS  Google Scholar 

  33. Renault L, Nassar N, Vetter I, Becker J, Klebe C, Roth M, Wittinghofer A (1998) The 1.7 angstrom crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature 392(6671):97–101

    CAS  Google Scholar 

  34. Iwaoka M, Takemoto S, Okada M, Tomoda S (2002) Weak nonbonded S–X (X = O, N, and S) interactions in proteins. Statistical and theoretical studies. Bull Chem Soc Jpn 75(7):1611–1625

    CAS  Google Scholar 

  35. Pantoja-Uceda D, Shewry PR, Bruix M, Tatham AS, Santoro J, Rico M (2004) Solution structure of a methionine-rich 2S albumin from sunflower seeds: Relationship to its allergenic and emulsifying properties. Biochem 43(22):6976–6986

    CAS  Google Scholar 

  36. Brosnan JT, Brosnan ME (2006) The sulfur-containing amino acids: An overview. J Nutr 136(6):1636S–1640S

    CAS  Google Scholar 

  37. Nicoletti FP, Comandini A, Bonamore A, Boechi L, Boubeta FM, Feis A, Smulevich G, Boffi A (2010) Sulfide binding properties of truncated hemoglobins. Biochem 49(10):2269–2278

    CAS  Google Scholar 

  38. Iwaoka M, Isozumi N (2012) Hypervalent nonbonded interactions of a divalent sulfur atom. Implications in protein architecture and the functions. Molecules 17(6):7266–7283

    CAS  Google Scholar 

  39. Kolluru GK, Shen XG, Bir SC, Kevil CG (2013) Hydrogen sulfide chemical biology: pathophysiological roles and detection. Nitric Oxide-Biol Ch 35:5–20

    CAS  Google Scholar 

  40. Sabin JR (1971) Hydrogen bonds involving sulfur. I. Hydrogen sulfide dimer. J Am Chem Soc 93(15):3613–3620

    CAS  Google Scholar 

  41. Li S, Li YS (1991) FTIR spectra of matrix isolated complexes between sulfur-compounds. Spectrochim Acta Part A 47(2):201–209

    Google Scholar 

  42. Wierzejewska M (2000) FTIR matrix isolation studies of complexes of dimethylsulfide, dimethyldisulfide and hydrogen sulfide with nitric acid. Vib Spectrosc 23(2):253–262

    CAS  Google Scholar 

  43. Wierzejewska M (2000) Infrared matrix isolation studies of complexes formed between dimethylsulfide, dimethyldisulfide and nitrous acid. J Mol Struct 520:199–214

    CAS  Google Scholar 

  44. Wierzejewska M, Saldyka M (2004) Are hydrogen bonds to sulfur and oxygen different? Theoretical study of dimethylsulfide and dimethylether complexes with nitric acid. Chem Phys Lett 391(1–3):143–147

    CAS  Google Scholar 

  45. Galardon E, Roger T, Deschamps P, Roussel P, Tomas A, Artaud I (2012) Synthesis of a (FeSH)-S-II complex stabilized by an intramolecular N–H· · · S hydrogen bond, which acts as a H2S donor. Inorg Chem 51(19):10068–10070

    CAS  Google Scholar 

  46. Okamura T-a, Kunisue K, Omi Y, Onitsuka K (2013) Strong NH· · · S hydrogen bonds in molybdoenzyme models containing anilide moieties. Dalton Trans 42:7569–7578

    CAS  Google Scholar 

  47. Okamura T-a, Ushijima Y, Omi Y, Onitsuka K (2013) Systematic investigation of relationship between strength of NH···S hydrogen bond and reactivity of molybdoenzyme models. Inorg Chem 52:381–394

    CAS  Google Scholar 

  48. Zhou YJ, Zhang MM, Wang XS (2013) The N–H· · · X hydrogen bonds in the crystal structures of (Thio)Isochromene Derivatives. J Chem Crystallogr 43(1):26–30

    CAS  Google Scholar 

  49. Xu LH, Liu Q, Suenram RD, Lovas FJ, Walker ARH, Jensen JO, Samuels AC (2004) Rotational spectra, conformational structures, and dipole moments of thiodiglycol by jet-cooled FTMW and ab initio calculations. J Mol Spectrosc 228(2):243–250

    CAS  Google Scholar 

  50. Crittenden DL (2009) A systematic CCSD(T) study of long-range and noncovalent interactions between benzene and a series of first- and second-row hydrides and rare gas atoms. J Phys Chem A 113(8):1663–1669

    CAS  Google Scholar 

  51. Cabaleiro-Lago EM, Rodriguez-Otero J (2002) Methanethiol dimer and trimer. An ab initio and DFT study of the interaction. J Phys Chem A 106(32):7440–7447

    CAS  Google Scholar 

  52. Wennmohs F, Staemmler V, Schindler M (2003) Theoretical investigation of weak hydrogen bonds to sulfur. J Chem Phys 119(6):3208–3218

    CAS  Google Scholar 

  53. Vila A, Mosquera RA (2006) Are the hydrogen bonds involving sulfur bases inverse or anomalous? Int J Quantum Chem 106(4):928–934

    CAS  Google Scholar 

  54. Jezierska A, Panek JJ, Mazzarello R (2009) Structural and electronic structure differences due to the O–H· · · O and O–H· · · bond formation in selected benzamide derivatives: a first-principles molecular dynamics study. Theor Chem Acc 124(5–6):319–330

    CAS  Google Scholar 

  55. Steudel R, Steudel Y (2009) Microsolvation of thiosulfuric acid and its tautomeric anions [HSSO3] and [SSO2(OH)] Studied by B3LYP-PCM and G3X(MP2) calculations. J Phys Chem A 113(36):9920–9933

    CAS  Google Scholar 

  56. Kaur D, Aulakh D, Khanna S, Singh H (2014) Theoretical study on the nature of S· · · H and O· · · H hydrogen bonds. J Sulfur Chem 35(3):290–303

    CAS  Google Scholar 

  57. Ueyama N, Nishikawa N, Yamada Y, Okamura T, Oka S, Sakurai H, Nakamura A (1998) Synthesis and properties of octaethylporphinato(arenethiolato)iron(III) complexes with intramolecular NH–S hydrogen bond: chemical function of the hydrogen bond. Inorg Chem 37(10):2415–2421

    CAS  Google Scholar 

  58. Nangia A, Desiraju GR (1999) Axial and equatorial conformations of penicillins, their sulphoxides and sulphones: the role of N–H· · · S and C–H· · · O hydrogen bonds. J Mol Struct 65–79

    Google Scholar 

  59. Word JM, Lovell SC, LaBean TH, Taylor HC, Zalis ME, Presley BK, Richardson JS, Richardson DC (1999) Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. J Mol Biol 285(4):1711–1733

    Google Scholar 

  60. Word JM, Lovell SC, Richardson JS, Richardson DC (1999) Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 285(4):1735–1747

    Google Scholar 

  61. Francois S, Rohmer MM, Benard M, Moreland AC, Rauchfuss TB (2000) The N–H–S hydrogen bond in (TACN)2Fe2S6 (TACN = triazacyclononane) and in model systems involving the persulfido moiety: an ab initio and DFT study. J Am Chem Soc 122(51):12743–12750

    CAS  Google Scholar 

  62. Steiner T (2000) S–H· · · S hydrogen-bond chain in thiosalicylic acid. Acta Crystallogr Sect C-Cryst Struct Commun 56:876–877

    Google Scholar 

  63. Krepps MK, Parkin S, Atwood DA (2001) Hydrogen bonding with sulfur. Cryst Growth Des 1(4):291–297

    CAS  Google Scholar 

  64. Hambley TW, Hibbs DE, Turner P, Howard ST, Hursthouse MB (2002) Insights into bonding and hydrogen bond directionality in thioacetamide from the experimental charge distribution. J Chem Soc-Perkin Trans 2(2):235–239

    Google Scholar 

  65. Lynch DE, McClenaghan I, Light ME, Coles SJ (2002) The solid-state packing of sulfur substituted 2-aminopyrimidines and the occurrence of N–H-S hydrogen-bonding associations. Cryst Eng 5(1):79–94

    CAS  Google Scholar 

  66. Usman A, Fun HK, Ganguly NC, Datta M, Ghosh K (2003) 2-(2-hydroxyphenyl)-1,3-dithiane. Acta Crystallogr Sect E-Struct Rep Online 59:O773–O775

    CAS  Google Scholar 

  67. Sundaresan CN, Dixit S, Venugopalan P (2004) A supramolecular assembly dominated by N–H· · · S hydrogen bonds: structure of 2-thioureidobenzoxazole by single crystal X-ray diffraction. J Mol Struct 693(1–3):205–209

    CAS  Google Scholar 

  68. Valdes-Martinez J, Hernandez-Ortega S, Rubio M, Li DT, Swearingen JK, Kaminsky W, Kelman DR, West DX (2004) Study of the sulfur atom as hydrogen bond acceptor in N(2)-pyridylmethyl-N-arylthioureas. J Chem Crystallogr 34(8):533–540

    CAS  Google Scholar 

  69. Moroder L (2005) Isosteric replacement of sulfur with other chalcogens in peptides and proteins. J Pept Sci 11(4):187–214

    CAS  Google Scholar 

  70. Tutughamiarso M, Egert E (2011) Cocrystals of 6-propyl-2-thiouracil: N–H· · · O versus N–H· · · S hydrogen bonds. Acta Crystallogr, Sect C: Cryst Struct Commun 67:O439–O445

    CAS  Google Scholar 

  71. Naktode K, Kottalanka RK, Panda TK (2012) N-(2,6-Dimethylphenyl)diphenylphosphinamine chalcogenides (S, Se) and a zirconium complex possessing phosphanylamide in the coordination sphere. New J Chem 36(11):2280–2285

    CAS  Google Scholar 

  72. Minkov VS, Boldyreva EV (2013) Weak hydrogen bonds formed by thiol groups in N-Acetyl-L-Cysteine and their response to the crystal structure distortion on increasing pressure. J Phys Chem B 117(46):14247–14260

    CAS  Google Scholar 

  73. Olivella M, Caltabiano G, Cordomi A (2013) The role of Cysteine 6.47 in class A GPCRs. BMC Struct Biol 13:3

    CAS  Google Scholar 

  74. AlDamen MA, Sinnokrot M (2014) Crystallographic and theoretical studies of 1-(1-naphthyl)-2-thiourea with intermolecular N–H· · · S heteroatom interaction and N–H· · ·  π interaction. J Struct Chem 55(1):53–60

    CAS  Google Scholar 

  75. Beck BW, Xie Q, Ichiye T (2001) Sequence determination of reduction potentials by cysteinyl hydrogen bonds and peptide dipoles in 4Fe-4S ferredoxins. Biophys J 81(2):601–613

    CAS  Google Scholar 

  76. Duan GL, Smith VH, Weaver DF (2001) Characterization of aromatic-thiol π-type hydrogen bonding and phenylalanine-cysteine side chain interactions through ab initio calculations and protein database analyses. Mol Phys 99(19):1689–1699

    CAS  Google Scholar 

  77. Pal D, Chakrabarti P (1998) Different types of interactions involving cysteine sulfhydryl group in proteins. J Biomol Struct Dyn 15(6):1059–1072

    CAS  Google Scholar 

  78. Zhou P, Tian FF, Lv FL, Shang ZC (2009) Geometric characteristics of hydrogen bonds involving sulfur atoms in proteins. Proteins Struct Funct Bioinf 76(1):151–163

    CAS  Google Scholar 

  79. Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41(1):48–76

    CAS  Google Scholar 

  80. Ranaghan KE, Hung JE, Bartlett GJ, Mooibroek TJ, Harvey JN, Woolfson DN, van der Donk WA, Mulholland AJ (2014) A catalytic role for methionine revealed by a combination of computation and experiments on phosphite dehydrogenase. Chem Sci 5(6):2191–2199

    CAS  Google Scholar 

  81. Duncan MA (2003) Infrared spectroscopy to probe structure and dynamics in metal ion-molecule complexes. Int Rev Phys Chem 22(2):407–435

    CAS  Google Scholar 

  82. Ebata T, Fujii A, Mikami N (1998) Vibrational spectroscopy of small-sized hydrogen-bonded clusters and their ions. Int Rev Phys Chem 17(3):331–361

    CAS  Google Scholar 

  83. Fujii A, Mizuse K (2013) Infrared spectroscopic studies on hydrogen-bonded water networks in gas phase clusters. Int Rev Phys Chem 32(2):266–307

    CAS  Google Scholar 

  84. Fujii M, Dopfer O (2012) Ionisation-induced site switching dynamics in solvated aromatic clusters: phenol-(rare gas)(n) clusters as prototypical example. Int Rev Phys Chem 31(1):131–173

    CAS  Google Scholar 

  85. Kang C, Pratt DW (2005) Structures, charge distributions, and dynamical properties of weakly bound complexes of aromatic molecules in their ground and electronically excited states. Int Rev Phys Chem 24(1):1–36

    CAS  Google Scholar 

  86. Simons JP, Jockusch RA, Carcabal P, Hung I, Kroemer RT, Macleod NA, Snoek LC (2005) Sugars in the gas phase. Spectroscopy, conformation, hydration, co-operativity and selectivity. Int Rev Phys Chem 24(3–4):489–531

    CAS  Google Scholar 

  87. Wild DA, Bieske EJ (2003) Infrared investigations of negatively charged complexes and clusters. Int Rev Phys Chem 22(1):129–151

    CAS  Google Scholar 

  88. Buckingham AD, Fowler PW (1985) A model for the geometries of van der Waals complexes. Can J Chem 63:2018–2025

    CAS  Google Scholar 

  89. Graindourze M, Maes G (1985) Matrix isolation vibrational spectra of alkyl chalcogenides complexed with hydrogen chloride. Matrix isolation IR spectra as a guide for the analysis of solution IR spectra of alkyl sulfide and alkyl selenide complexes with hydrogen chloride. J Mol Spectrosc 114:97–104

    CAS  Google Scholar 

  90. Maes G, Graindourze M (1985) Matrix isolation vibrational spectra of alkyl chalcogenides complexed with HCl: structure of alkyl sulfide and alkyl selenide complexes with hydrochloric acid in ar matrices from infrared spectra. J Mol Spectrosc 113(2):410–425

    CAS  Google Scholar 

  91. Maes G, Graindourze M (1985) Conformational isomerism of ethyl chalcogenides in inert matrixes: influence on the νs band structure of hydrogen-bonded complexes with hydrogen chloride. J Mol Spectrosc 114:280–288

    CAS  Google Scholar 

  92. Andrews L, Arlinghaus RT, Hunt RD (1986) FTIR spectra of dialkyl sulfide and alkanethiol complexes with hydrogen fluoride in solid argon. Inorg Chem 25(18):3205–3209

    CAS  Google Scholar 

  93. Barnes AJ, Wright MP (1986) Molecular complexes of hydrogen halides with ethers and sulfides studied by matrix isolation vibrational spectroscopy. J Mol Struct: Theochem 28:21–30

    CAS  Google Scholar 

  94. Jeng MLH, Ault BS (1990) Infrared matrix isolation study of hydrogen bonds involving carbon–hydrogen bonds: alkynes with bases containing second- and third-row donor atoms. J Phys Chem 94(4):1323–1327

    CAS  Google Scholar 

  95. Jeng MLH, Ault BS (1990) Infrared matrix isolation studies of hydrogen bonds involving carbon–hydrogen bonds: alkenes with selected bases. J Phys Chem 94:4851–4855

    CAS  Google Scholar 

  96. Li S, Li YS (1991) FT-IR spectra of matrix isolated complexes between some alkanethiols and sulfur dioxide. J Mol Struct 248:79–88

    CAS  Google Scholar 

  97. Kim KS, Tarakeshwar P, Lee JY (2000) Molecular clusters of π-systems: theoretical studies of structures, spectra, and origin of interaction energies. Chem Rev 100(11):4145–4185

    CAS  Google Scholar 

  98. Li S, Kurtz H, Korambath P, Li YS (2000) Infrared spectra, photochemistry, and ab initio calculations of matrix isolated methanethiol/sulfur dioxide complex. J Mol Struct 550–551:235–244

    Google Scholar 

  99. Howard DL, Kjaergaard HG (2008) Hydrogen bonding to divalent sulfur. Phys Chem Chem Phys 10(28):4113–4118

    CAS  Google Scholar 

  100. Biswal HS, Shirhatti PR, Wategaonkar S (2009) O–H···O versus O–H···S hydrogen bonding I: experimental and computational studies on the p-Cresol·H2O and p-Cresol·H2S complexes. J Phys Chem A 113(19):5633–5643

    CAS  Google Scholar 

  101. Biswal HS, Shirhatti PR, Wategaonkar S (2010) O–H···O versus O–H···S hydrogen bonding 2: alcohols and thiols as hydrogen bond acceptors. J Phys Chem A 114:6944–6955

    CAS  Google Scholar 

  102. Biswal HS, Chakraborty S, Wategaonkar S (2008) Experimental evidence of O–H· · · S hydrogen bonding in supersonic jet. J Chem Phys 129(18):184311–184317

    Google Scholar 

  103. Biswal HS, Wategaonkar S (2010) O–H···O versus O–H···S Hydrogen Bonding. 3. IR–UV double resonance study of hydrogen bonded complexes of p-cresol with diethyl ether and its sulfur analog. J Phys Chem A 114(19):5947–5957

    CAS  Google Scholar 

  104. Biswal HS, Wategaonkar S (2011) OH· · · X (X = O, S) hydrogen bonding in tetrahydrofurane and tetrahydrothiophene. J Chem Phys 135(13):134306

    Google Scholar 

  105. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7(3):625–632

    Google Scholar 

  106. Otero-de-la-Roza A, Johnson ER, Contreras-Garcia J (2012) Revealing non-covalent interactions in solids: NCI plots revisited. Phys Chem Chem Phys 14(35):12165–12172

    CAS  Google Scholar 

  107. Bader RFW, Nguyen-Dang TT (1981) Quantum theory of atoms in molecules—Dalton revisited. Adv Quantum Chem 14:63–124

    CAS  Google Scholar 

  108. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  109. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893–928

    CAS  Google Scholar 

  110. Koch U, Popelier PLA (1995) Characterization of C–H–O hydrogen bonds on the basis of the charge density. J Phys Chem 99(24):9747–9754

    CAS  Google Scholar 

  111. Popelier P (2000) Atoms in molecules, an introduction. Prentice Hall, Englewood Cliffs

    Google Scholar 

  112. Glendening ED, Streitwieser A (1994) Natural energy decomposition analysis: an energy partitioning procedure for molecular-Interactions with application to weak hydrogen bonding, strong ionic, and moderate donor-dcce tor interactions. J Chem Phys 100(4):2900–2909

    CAS  Google Scholar 

  113. Glendening ED (1996) Natural energy decomposition analysis: explicit evaluation of electrostatic and polarization effects with application to aqueous clusters of alkali metal cations and neutrals. J Am Chem Soc 118(10):2473–2482

    CAS  Google Scholar 

  114. Schenter GK, Glendening ED (1996) Natural energy decomposition analysis: the linear response electrical self energy. J Phys Chem 100(43):17152–17156

    CAS  Google Scholar 

  115. Kitaura K, Morokuma K (1976) A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation. Int J Quantum Chem 10(2):325–340

    CAS  Google Scholar 

  116. Umeyama H, Morokuma K (1977) The origin of hydrogen bonding. An energy decomposition study. J Am Chem Soc 99(5):1316–1332

    CAS  Google Scholar 

  117. Stevens WJ, Fink WH (1987) Frozen fragment reduced variational space analysis of hydrogen bond in interactions-application to the water dimer. Chem Phys Lett 139(1):15–22

    CAS  Google Scholar 

  118. Jouvet C, Lardeux-Dedonder C, Richard-Viard M, Solgadi D, Tramer A (1990) Reactivity of molecular clusters in the gas phase: proton-transfer reaction in neutral phenol-(ammonia)n and phenol-(ethanamine)n. J Phys Chem 94:5041–5048

    CAS  Google Scholar 

  119. Iwasaki A, Fujii A, Watanabe T, Ebata T, Mikami N (1996) Infrared spectroscopy of hydrogen-bonded phenol-amine clusters in supersonic jets. J Phys Chem 100(40):16053–16057

    CAS  Google Scholar 

  120. Biswas N, Wategaonkar S, Watanabe T, Ebata T, Mikami N (2004) Fluorescence, REMPI, hole-burning, and FDIR spectroscopy of para-cyanophenol-water1 complex. Chem Phys Lett 394:61–67

    CAS  Google Scholar 

  121. Bhattacharyya S, Bhattacherjee A, Shirhatti PR, Wategaonkar S (2013) O–H· · · S hydrogen bonds conform to the acid-base formalism. J Phys Chem A 117(34):8238–8250

    CAS  Google Scholar 

  122. Braun JE, Mehnert T, Neusser HJ (2000) Binding energy of van der Waals- and hydrogen-bonded clusters by threshold ionization techniques. Int J Mass Spectrom 203(1–3):1–18

    CAS  Google Scholar 

  123. Braun J, Neusser HJ, Hobza P (2003) N–H· · · p interactions in Indole-Benzene-h6,d6 and Indole-Benzene-h6,d6 radical cation complexes. Mass Analyzed threshold ionization experiments and correlated ab initio quantum chemical calculations. J Phys Chem A 107(19):3918–3924

    CAS  Google Scholar 

  124. Georgiev S, Neusser HJ (2004) Investigation of hydrogen bonding in 3-methylindole–H2O cluster by mass analyzed threshold ionization. Chem Phys Lett 389(1–3):24–28

    CAS  Google Scholar 

  125. Zhang B, Li C, Su H, Lin JL, Tzeng WB (2004) Mass analyzed threshold ionization spectroscopy of p-fluorophenol cation and the p-fluoro substitution effect. Chem Phys Lett 390:65–70

    CAS  Google Scholar 

  126. Georgiev S, Neusser HJ (2005) Mass analyzed threshold ionization of hydrogen bonded clusters of biological molecules: the 3-methylindole center.C6H6 complex. J Electron Spectrosc Relat Phenom 142(3):207–213

    CAS  Google Scholar 

  127. Shibasaki K, Fujii A, Mikami N, Tsuzuki S (2006) Magnitude of the CH/π interaction in the gas phase: Experimental and theoretical determination of the accurate interaction energy in benzene-methane. J Phys Chem A 110(13):4397–4404

    CAS  Google Scholar 

  128. Huang JH, Huang K, Liu SQ, Luo Q, Tzeng WB (2007) Molecular structures and vibrations of cis and trans m-cresol in the electronically excited S1 and cationic D0 states. J Photochem Photobiol A 188(2–3):252–259

    CAS  Google Scholar 

  129. Shirhatti PR, Wategaonkar S (2012) Mass analyzed threshold ionization (MATI) spectroscopy of p-cresol. Indian J Phys 86(3):159–164

    CAS  Google Scholar 

  130. Cordes E, Dopfer O, Wright TG, Mullerdethlefs K (1993) Vibrational spectroscopy of the phenol-ethanol cation. J Phys Chem 97(29):7471–7479

    CAS  Google Scholar 

  131. Vondrak T, Sato S, Kimura K (1997) Cation vibrational spectra of indole and indole-argon van der Waals complex. A zero kinetic energy photoelectron study. J Phys Chem A 101(13):2384–2389

    CAS  Google Scholar 

  132. Dessent CEH, Muller-Dethlefs K (2000) Hydrogen-bonding and van der Waals complexes studied by ZEKE and REMPI spectroscopy. Chem Rev 100(11):3999–4021

    CAS  Google Scholar 

  133. Zierhut M, Dummler S, Roth W, Fischer I (2003) Multiphoton ionization and zero kinetic energy photoelectron spectroscopy of the 1-naphthol(H2O) cluster. Chem Phys Lett 381:346–353

    CAS  Google Scholar 

  134. Cockett MCR (2005) Photoelectron spectroscopy without photoelectrons: twenty years of ZEKE spectroscopy. Chem Soc Rev 34(11):935–948

    CAS  Google Scholar 

  135. Biswal HS, Wategaonkar S (2009) Nature of the N–H···S hydrogen bond. J Phys Chem A 113(46):12763–12773

    CAS  Google Scholar 

  136. Ballew RM, Sabelko J, Gruebele M (1996) Direct observation of fast protein folding: the initial collapse of apomyoglobin. Proc Nat Acad Sci U S A 93(12):5759–5764

    CAS  Google Scholar 

  137. Desfrancois C, Carles S, Schermann JP (2000) Weakly bound clusters of biological interest. Chem Rev 100(11):3943–3962

    CAS  Google Scholar 

  138. Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed 42(11):1210–1250

    CAS  Google Scholar 

  139. Biswal HS, Gloaguen E, Mons M, Bhattacharyya S, Shirhatti PR, Wategaonkar S (2011) Structure of the indole-benzene Dimer Revisited. J Phys Chem A 115(34):9485–9492

    CAS  Google Scholar 

  140. Braun JE, Grebner TL, Neusser HJ (1998) Van der Waals versus hydrogen-bonding in complexes of indole with argon, water, and benzene by mass-analyzed pulsed field threshold ionization. J Phys Chem A 102(19):3273–3278

    CAS  Google Scholar 

  141. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2000) Origin of the attraction and directionality of the NH/π interaction: Comparison with OH/π and CH/π interactions. J Am Chem Soc 122(46):11450–11458

    CAS  Google Scholar 

  142. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2000) The magnitude of the CH/p interaction between benzene and some model hydrocarbons. J Am Chem Soc 122(15):3746–3753

    CAS  Google Scholar 

  143. Morita S-i, Fujii A, Mikami N, Tsuzuki S (2006) Origin of the attraction in aliphatic C–H/π interactions: Infrared spectroscopic and theoretical characterization of gas-phase clusters of aromatics with methane. J Phys Chem A 110(36):10583–10590

    CAS  Google Scholar 

  144. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Fujii A (2006) Magnitude and directionality of the interaction energy of the aliphatic CH/π interaction: Significant difference from hydrogen bond. J Phys Chem A 110(33):10163–10168

    CAS  Google Scholar 

  145. Alberti M, Aguilar A, Huarte-Larranaga F, Lucas JM, Pirani F (2014) Benzene-hydrogen bond (C6H6-HX) Interactions: the influence of the X nature on their strength and anisotropy. J Phys Chem A 118(9):1651–1662

    CAS  Google Scholar 

  146. Ueyama N, Nishikawa N, Yamada Y, Okamura T, Nakamura A (1996) Cytochrome P-450 model (porphinato)(thiolato)iron(III) complexes with single and double NH· · · S hydrogen bonds at the thiolate site. J Am Chem Soc 118(50):12826–12827

    CAS  Google Scholar 

  147. Suzuki N, Higuchi T, Urano Y, Kikuchi K, Uekusa H, Ohashi Y, Uchida T, Kitagawa T, Nagano T (1999) Novel iron porphyrin-alkanethiolate complex with intramolecular NH· · · S hydrogen bond: Synthesis, spectroscopy, and reactivity. J Am Chem Soc 121(49):11571–11572

    CAS  Google Scholar 

  148. Liu S-G, Li Y-Z, Zuo J-L, You X-Z (2004) N, N'-Bis[2-(methylsulfanyl)phenyl]pyridine-2,6-dicarboxamide. Acta Cryst E 60(9):o1527–o1529

    CAS  Google Scholar 

  149. Du P, Jiang XK, Li Z-T (2009) Five- and six-membered N–H⋯S hydrogen bonding in aromatic amides. Tetrahedron Lett 50(3):320–324

    CAS  Google Scholar 

  150. Biswal HS, Gloaguen E, Loquais Y, Tardivel B, Mons M (2012) Strength of (NHS)-S-· · · hydrogen bonds in methionine residues revealed by gas-phase ir/uv spectroscopy. J Phys Chem Lett 3(6):755–759

    CAS  Google Scholar 

  151. Khedkar JK, Deshmukh MM, Gadre SR, Gejji SP (2012) Hydrogen bond energies and cooperativity in substituted calix[n]arenes (n = 4, 5). J Phys Chem A 116(14):3739–3744

    CAS  Google Scholar 

  152. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313(3–4):701–706

    CAS  Google Scholar 

  153. Amos RD (1986) Structures, harmonic frequencies and infrared intensities of the dimers of H2O and H2S. Chem Phys 104(1):145–151

    CAS  Google Scholar 

  154. Gutowsky HS, Emilsson T, Arunan E (1997) Rotational spectra, structure, and internal dynamics of Ar–H2S isotopomers. J Chem Phys 106(13):5309–5315

    CAS  Google Scholar 

  155. Arunan E, Emilsson T, Gutowsky HS, Fraser GT, de Oliveira G, Dykstra CE (2002) Rotational spectrum of the weakly bonded C6H6–H2S dimer and comparisons to C6H6–H2O dimer. J Chem Phys 117(21):9766–9776

    CAS  Google Scholar 

  156. Goswami M, Mandal PK, Ramdass DJ, Arunan E (2004) Rotational spectra and structure of the floppy C2H4–H2S complex: bridging hydrogen bonding and van der Waals interactions. Chem Phys Lett 393(1–3):22–27

    CAS  Google Scholar 

  157. Hermida-Ramon JM, Cabaleiro-Lago EM, Rodriguez-Otero J (2005) Theoretical characterization of structures and energies of benzene–(H2S)n and (H2S)n (n = 1–4) clusters. J Chem Phys 122(20):204315

    Google Scholar 

  158. Goswami M, Arunan E (2011) Microwave spectrum and structure of C6H5CCH⋯H2S complex. J Mol Spectrosc 268(1–2):147–156

    CAS  Google Scholar 

  159. Bhattacherjee A, Matsuda Y, Fujii A, Wategaonkar S (2013) The intermolecular S–H· · · Y (Y = S, O) hydrogen bond in the H2S Dimer and the H2S-MeOH complex. Chemphyschem 14(5):905–914

    CAS  Google Scholar 

  160. Goswami M, Neill JL, Muckle M, Pate BH, Arunan E (2013) Microwave, infrared-microwave double resonance, and theoretical studies of C2H4· · · H2S complex. J Chem Phys 139(10):104303

    CAS  Google Scholar 

  161. Tursi AJ, Nixon ER (1970) Infrared spectra of matrix-isolated hydrogen sulfide in solid nitrogen. J Chem Phys 53(2):518–521

    CAS  Google Scholar 

  162. Barnes AJ, Howells JDR (1972) Infra-red cryogenic studies. Part 7 hydrogen sulphide in matrices. J Chem Soc Faraday Trans 68(4):729–736

    CAS  Google Scholar 

  163. Lechugafossat L, Flaud JM, Camypeyret C, Johns JWC (1984) The spectrum of natural hydrogen sulfide between 2150 and 2950 cm−1. Can J Phys 62(12):1889–1923

    CAS  Google Scholar 

  164. Helgaker T, Klopper W, Koch H, Noga J (1997) Basis-set convergence of correlated calculations on water. J Chem Phys 106:9639–9646

    CAS  Google Scholar 

  165. Rocher-Casterline BE, Ch’ng LC, Mollner AK, Reisler H (2011) Communication: determination of the bond dissociation energy (D0) of the water dimer, (H2O)2, by velocity map imaging. J Chem Phys 134:211101/211101–211101/211104

    Google Scholar 

  166. Adhikari U, Scheiner S (2012) Contributions of various noncovalent bonds to the interaction between an amide and S-containing molecules. Chemphyschem 13:3535–3541

    CAS  Google Scholar 

  167. Solimannejad M, Scheiner S (2011) Unconventional H-bonds: SH···N interaction. Int J Quantum Chem 111:3196–3200

    CAS  Google Scholar 

  168. Solimannejad M, Gharabaghi M, Scheiner S (2011) SH···N and SH···π blue-shifting H-bonds and N···P interactions in complexes pairing HSN with amines and phosphines. J Chem Phys 134:024312/024311–024312/024316

    Google Scholar 

  169. Steiner T, Koellner G (2001) Hydrogen bonds with π-acceptors in proteins: frequencies and role in stabilizing local 3D structures. J Mol Bio 305(3):535–557

    CAS  Google Scholar 

  170. Ringer AL, Senenko A, Sherrill CD (2007) Models of S/π interactions in protein structures: comparison of the H2S-benzene complex with PDB data. Protein Sci 16(10):2216–2223

    CAS  Google Scholar 

  171. Tsuzuki S, Uchimaru T (2006) Magnitude and physical origin of intermolecular interactions of aromatic molecules: recent progress of computational studies. Curr Org Chem 10(7):745–762

    CAS  Google Scholar 

  172. Vaupel S, Brutschy B, Tarakeshwar P, Kim KS (2006) Characterization of weak NH-π intermolecular interactions of ammonia with various substituted π-systems. J Am Chem Soc 128(16):5416–5426

    CAS  Google Scholar 

  173. Salonen LM, Ellermann M, Diederich F (2011) Aromatic rings in chemical and biological recognition: energetics and structures. Angew Chem Int Ed 50(21):4808–4842

    CAS  Google Scholar 

  174. Tauer TP, Derrick ME, Sherrill CD (2005) Estimates of the ab initio limit for sulfur-π interactions: the H2S-benzene dimer. J Phys Chem A 109(1):191–196

    CAS  Google Scholar 

  175. Wang YX, Paulus B (2007) A comparative electron correlation treatment in H2S-benzene dimer with DFT and wavefunction-based ab initio methods. Chem Phys Lett 441(4–6):187–193

    CAS  Google Scholar 

  176. Biswal HS, Wategaonkar S (2009) Sulfur, not too far behind O, N, and C: S–H···π hydrogen bond. J Phys Chem A 113(46):12774–12782

    CAS  Google Scholar 

  177. Hager J, Wallace SC (1983) Laser spectroscopy and photodynamics of indole and indole-vanderwaals molecules in a supersonic beam. J Phys Chem 87(12):2121–2127

    CAS  Google Scholar 

  178. Saggu M, Levinson NM, Boxer SG (2011) Direct measurements of electric fields in weak OH···π hydrogen bonds. J Am Chem Soc 133(43):17414–17419

    CAS  Google Scholar 

  179. Saggu M, Levinson NM, Boxer SG (2012) Experimental quantification of electrostatics in X-H· · · π hydrogen bonds. J Am Chem Soc 134(46):18986–18997

    CAS  Google Scholar 

Download references

Acknowledgment

I am very much thankful to Prof. Sanjay Wategaonkar and Dr. Michel Mons, who introduced me to the exciting field of laser spectroscopy. My special thanks to Dr. Rudresh Acharya for stimulating discussions and for his help in rendering figures for SCHBs in protein structures. I am also grateful to my coworkers, students and authors of the cited references who have contributed to this work in many ways. This work is financially supported by DST-Inspire faculty fellowship, Department of Science and Technology (DST, Govt. of India) and National Institute of Science Education and Research, (Department of Atomic Energy, DAE, Govt. of India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himansu S. Biswal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Biswal, H. (2015). Hydrogen Bonds Involving Sulfur: New Insights from ab Initio Calculations and Gas Phase Laser Spectroscopy. In: Scheiner, S. (eds) Noncovalent Forces. Challenges and Advances in Computational Chemistry and Physics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-14163-3_2

Download citation

Publish with us

Policies and ethics