Skip to main content

Anion-π Interactions in Supramolecular Chemistry and Catalysis

  • Chapter
  • First Online:

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 19))

Abstract

Non-covalent interactions play a major role in supramolecular chemistry and biochemistry by dominating the central parts of living systems since they dictate the functionality of many biological and host-guest systems. A good comprehension of the different non-covalent forces is necessary for the rational design of new drugs and developing improved synthetic receptors capable to function in competitive media. Interactions involving aromatic rings (or π-systems in general) are very relevant in supramolecular chemistry, exemplified by the cation–π interaction and its importance in protein structure and enzyme catalysis. From a traditional point of view, the π-system is usually considered as electron rich (π-basic). The naissance of the counterintuitive anion–π interaction –the attractive interaction between an anion and an electron poor π-system (π-acid)– was somewhat controversially discussed by the scientific community. However, in the last decade a great deal of theoretical and experimental investigations has time-honored the anion–π interaction as an important supramolecular bond. Herein we describe the physical nature of this noncovalent interaction and the different strategies that can be used to modulate its strength. Finally, selected state-of-the-art reports illustrating the rational utilization of the anion–π interaction in supramolecular chemistry (anion receptors), biological applications and catalysis are described in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schneider HJ (2009) Binding mechanisms in supramolecular complexes. Angew Chem Int Ed 48:3924–3977

    CAS  Google Scholar 

  2. Schneider HJ, Yatsimirski A (2000) Principles and methods in supramolecular chemistry. Wiley, Chichester

    Google Scholar 

  3. Lehn JM (1995) Supramolecular chemistry concepts and perspectives. Wiley-VCH, Weinheim

    Google Scholar 

  4. Vögtle F (1993) Supramolecular chemistry: an introduction. Wiley, New York

    Google Scholar 

  5. Beer PD, Gale PA, Smith DK (1999) Supramolecular chemistry. Oxford University Press, Oxford

    Google Scholar 

  6. Steed JW, Atwood JL (2000) Supramolecular chemistry. Wiley, Chichester

    Google Scholar 

  7. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically driven highly direccional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757.

    CAS  Google Scholar 

  8. Bundhun A, Ramasami P, Murray JS, Politzer P (2013) Trends in σ-hole strenghts and interactions of F3MX molecules (M = C, Si, Ge and X = F, Cl, Br, I). J Mol Model 19:2739–2746

    CAS  Google Scholar 

  9. Bauzá A, Mooibroek TJ, Frontera A (2013) Tetrel–bonding: rediscovered supramolecular force? Angew Chem Int Ed 52:12317–12321

    Google Scholar 

  10. Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed 42:1210–1250

    CAS  Google Scholar 

  11. Schneider HJ, Yatsimirsky A (2008) Selectivity in supramolecular host-guest complexes. Chem Soc Rev 37:263–277

    CAS  Google Scholar 

  12. Salonen LM, Ellermann M, Diederich F (2011) Aromatic rings in chemical and biological recognition: energetics and structures. Angew Chem Int Ed 50:4808–4842

    CAS  Google Scholar 

  13. Müller-Dethlefs K, Hobza P (2000) Noncovalent interactions: a challenge for experiment and theory. Chem Rev 100:143–167

    Google Scholar 

  14. Burley SK, Petsko GA (1985) Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229:23–28

    CAS  Google Scholar 

  15. Li S, Cooper VR, Thonhauser T, Lundqvist BI, Langreth DC (2009) Stacking interactions and DNA intercalation. J Phys Chem B 113:11166–11172

    CAS  Google Scholar 

  16. Rutledge LR, Campbell-Verduyn LS, Wetmore SD (2007) Characterization of the stacking interactions between DNA or RNA nucleobases and the aromatic amino acids. Chem Phys Lett 444:67–175

    Google Scholar 

  17. Tsuzuki S, Yoshida M, Uchimaru T, Mikami M (2001) The origin of the cation/π interaction: the significant importance of the induction in Li+ and Na+ complexes. J Phys Chem A 105:769–773

    CAS  Google Scholar 

  18. Ma JC, Dougherty DA (1997) The cation-π interaction. Chem Rev 97:1303–1324

    CAS  Google Scholar 

  19. Crowley PB, Golovin A (2005) Cation-π interactions in protein-protein interfaces. Proteins Struct Funct Genet 59:231–239

    CAS  Google Scholar 

  20. Gallivan JP, Dougherty DA (2000) A computational study of cation-π interactions vs salt bridges in aqueous media: implications for protein engineering. J Am Chem Soc 122:870–874

    CAS  Google Scholar 

  21. Lamoureux JS, Maynes JT, Glover JMN (2004) Recognition of 5′-YpG-3′ sequences by coupled stacking/hydrogen bonding interactions with amino acid residues. J Mol Biol 335:399–408

    CAS  Google Scholar 

  22. Frey J, Kraus T, Heitz V, Sauvage JP (2005) A catenane consisting of a large ring threaded through both cyclic units of a handcuff-like compound. Chem Commun 49:5310–5312

    Google Scholar 

  23. Masu H, Sakai M, Kishikawa K, Yamamoto M, Yamaguchi K, Kohmoto S (2005) Aromatic foldamers with iminodicarbonyl linkers: their structures and optical properties. J Org Chem 70 1423–1431

    CAS  Google Scholar 

  24. Bao X, Isaacsohn I, Drew AF, Smithrud DB (2007) Determining the binding and intracellular transporting abilities of a host-[3]rotaxane. J Org Chem 72:3988–4000

    CAS  Google Scholar 

  25. Heemstra JM, Moore JS (2004) Helix stabilization through pyridinium-π interactions. Chem Commun 40:1480–1481

    Google Scholar 

  26. Nishio M, Hirota M, Umezawa Y (1998) In the C–H/π interaction: evidence, nature, consequences. Wiley-VCH, New York

    Google Scholar 

  27. Nishio M (2004) CH/π hydrogen bonds in organic and organometallic chemistry. Cryst Eng Comm 6:130–156

    CAS  Google Scholar 

  28. Egli M, Sarkhel S (2007) Lone pair-aromatic interactions: to stabilize or not to stabilize. Acc Chem Res 40:197–205

    CAS  Google Scholar 

  29. Mooibroek TJ Gamez P Reedijk J (2008) Lone pair–π interactions: a new supramolecular bond? CrystEngComm 10:1501–1515

    CAS  Google Scholar 

  30. Mitra M, Manna P, Seth SK, Das A, Meredith J, Helliwell M, Bauzá A, Choudhury SR, Frontera A, Mukhopadhyay S (2013) Salt-bridge-π (sb-π) interactions at work: associative interactions of sb-π, π-π and anion-π in Cu(II)-malonate-2-aminopyridine-hexafluoridophosphate ternary system. CrystEngComm 15:686–696

    CAS  Google Scholar 

  31. Frontera A, Gamez P, Mascal M, Mooibroek TJ, Reedijk J (2011) Putting anion-π interactions into perspective. Angew Chem Int Ed 50:9564–9583

    CAS  Google Scholar 

  32. Schottel BL, Chifotides HT, Dunbar KR (2008) Anion-π interactions. Chem Soc Rev 37:68–83

    CAS  Google Scholar 

  33. Caltagirone C, Gale PA (2009) Anion receptor chemistry: highlights from 2007. Chem Soc Rev 38:520–563

    CAS  Google Scholar 

  34. Gamez P, Mooibroek TJ, Teat SJ, Reedijk J (2007) Anion binding involving π-acidic heteroaromatic rings. Acc Chem Res 40 435–444

    CAS  Google Scholar 

  35. Hay BP, Bryantsev VS (2008) Anion-arene adducts: C–H hydrogen bonding, anion-π interaction, and carbon bonding motifs. Chem Commun 44:2417–2428

    Google Scholar 

  36. Quiñonero D, Garau C, Rotger C, Frontera A, Ballester P, Costa A, Deyà PM (2002) Anion-π interactions: do they exist? Angew Chem Int Ed 41:3389–3392

    Google Scholar 

  37. Mascal M, Armstrong A, Bartberger MD (2002) Anion-aromatic bonding: a case for anion recognition by π-acidic rings. J Am Chem Soc 124:6274–6276

    CAS  Google Scholar 

  38. Alkorta I, Rozas I, Elguero J (2002) Interaction of anions with perfluoro aromatic compounds. J Am Chem Soc 124:8593–8598

    CAS  Google Scholar 

  39. Kim DY, Singh NJ, Kim KS (2008) Cyameluric acid as anion-π type receptor for ClO4 and NO3 : π-Stacked and edge-to-face structures. J Chem Theory Comput 4:1401–1407

    CAS  Google Scholar 

  40. Schottel BL, Bacsa J, Dunbar KR (2005) Anion dependence of Ag(I) reactions with 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine (bptz): isolation of the molecular propeller compound [Ag2(bptz)3][AsF6]2. Chem Commun 41:46–47

    Google Scholar 

  41. Han B, Lu JJ, Kochi JK (2008) Anion recognitions via cocrystallizations with organic π-acids in the efficient self-assembly of nanoscopic one-dimensional molecular chains. Cryst Growth Des 8:1327–1334

    CAS  Google Scholar 

  42. Mascal M, Yakovlev I, Nikitin EB, Fettinger JC (2007) Fluoride-selective host based on anion-π interactions, ion pairing, and hydrogen bonding: synthesis and fluoride-ion sandwich complex. Angew Chem Int Ed 46:8782–8784

    CAS  Google Scholar 

  43. Götz RJ, Robertazzi A, Mutikainen I, Turpeinen U, Gamez P, Reedijk J (2008) Concurrent anion-π interactions between a perchlorate ion and two π-acidic aromatic rings, namely pentafluorophenol and 1,3,5-triazine. Chem Commun 44:3384–3386

    Google Scholar 

  44. Albrecht M, Müller M, Mergel O, Rissanen K, Valkonen A (2010) CH-directed anion-π interactions in the crystals of pentafluorobenzyl-substituted ammonium and pyridinium salts. Chem Eur J 16:5062–5069

    CAS  Google Scholar 

  45. Estarellas C, Frontera A, Quiñonero D, Deyà PM (2011) Relevant anion-π interactions in biological systems: the case of urate oxidase. Angew Chem Int Ed 50:415–418

    CAS  Google Scholar 

  46. Chakravarty S, Sheng ZZ, Iverson B, Moore B (2012) “η6”-Type anion-π in biomolecular recognition. FEBS Lett 586:4180–4185

    CAS  Google Scholar 

  47. Jenkins DD, Harris JB, Howell EF, Hinde RJ, Baudry J (2013) STAAR: Statistical Analysis of Aromatic Rings. J Comput Chem 34:518–522

    CAS  Google Scholar 

  48. Dawson RE, Hennig A, Weimann DP, Emery D, Ravikumar V, Montenegro J, Takeuchi T, Gabutti S, Mayor M, Mareda J, Schalley CA, Matile S (2010) Experimental evidence for the functional relevance of anion-π interactions. Nat Chem 2:533–538

    CAS  Google Scholar 

  49. Sakai N, Mareda J, Vauthey E, Matile S (2010) Core-substituted naphthalenediimides. Chem Commun 46:4225–4237

    CAS  Google Scholar 

  50. Gale PA, Caltagirone C (2014) Anion sensing by small molecules and molecular ensembles. Chem Soc Rev. doi:10.1039/c4cs00179f

    Google Scholar 

  51. Caballero A, Zapata F, Beer PD (2013) Interlocked host molecules for anion recognition and sensing. Coord Chem Rev 257:2434–2455

    CAS  Google Scholar 

  52. Gale PA (2011) Anion receptor chemistry. Chem Commun 47:82–86

    CAS  Google Scholar 

  53. Wenzel M, Hiscock JR, Gale PA (2012) Anion receptor chemistry: highlights from 2010. Chem Soc Rev 41:480–520

    CAS  Google Scholar 

  54. Gale PA, Quesada R (2006) Anion coordination and anion-templated assembly: highlights from 2002 to 2004. Coord Chem Rev 250:3219–3244

    CAS  Google Scholar 

  55. Bowman-James K, Bianchi A, García-España E (2011) Anion coordination chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  56. Berg JM (1995) Zinc finger domains: from predictions to design Acc Chem Res 28:14–19

    CAS  Google Scholar 

  57. Ashcroft FM (2000) Ion channels and disease. Academic, San Diego

    Google Scholar 

  58. Moss B (1996) A land awash with nutrients-the problem of eutrophication. Chem Ind 11:407–411

    Google Scholar 

  59. Asakura T, Kim SY, Morita Y, Ozawa M (2005) Reduction of pertechnetate in nitric extraction of rare metals for future reprocessing. J Nucl Radiochem Sci 6:267–269

    CAS  Google Scholar 

  60. Benner S (2010) Hydrology: anthropogenic arsenic. Nat Geosci 3:5–6

    CAS  Google Scholar 

  61. Frontera A, Quiñonero D, Deyà PM (2011) Cation-π and anion-π interactions. WIREs Comput Mol Sci 1:440–459

    CAS  Google Scholar 

  62. Giese M, Albrecht M, Krappitz T, Peters M, Gossen V, Raabe G, Valkonen A, Rissanen K (2012) Cooperativity of H-bonding and anion-π interaction in the binding of anions with neutral π-acceptors. Chem Commun 48:9983–9985

    CAS  Google Scholar 

  63. Watt MM, Zakharov LN, Haley MM, Johnson DW (2013) Selective nitrate binding in competitive hydrogen bonding solvents: do anion-π interactions facilitate nitrate selectivity? Angew Chem Int Ed 52:10275–10280

    CAS  Google Scholar 

  64. Gamez P, Mooibroek TJ, Teat SJ, Reedijk J (2007) Anion-π interactions involving π-acidic rings. Acc Chem Res 40:435–444

    CAS  Google Scholar 

  65. Ballester P (2008) Recognition of anions. Springer Berlin

    Google Scholar 

  66. Frontera A (2013) Encapsulation of anions: macrocyclic receptors based on metal coordination and anion-π interactions. Coord Chem Rev 257:1716–1727

    CAS  Google Scholar 

  67. Schneider HJ, Werner F, Blatter T (1993) Attractive interactions between negative charges and polarizable aryl parts of host-guest systems. J Phys Org Chem 6:590–594

    CAS  Google Scholar 

  68. Schneider HJ (1991) Mechanisms of molecular recognition—investigations of organic host guest complexes. Angew Chem Int Ed Engl 30:1417–1436

    Google Scholar 

  69. Hiraoka K, Mizuse S, Yamabe S (1987) High-symmetric structure of the gas-phase cluster ions X···C6F6 (X = Cl, Br and I). J Phys Chem 91:5294–5297

    CAS  Google Scholar 

  70. Hiraoka K, Mizuse S, Yamabe S (1987) A determination of the stabilities and structures of F-(C6H6) and F-(C6F6) clusters. J Chem Phys 86:4102–4105

    CAS  Google Scholar 

  71. Bauzá A, Quiñonero D, Deyà PM, Frontera A (2013) Anion-π interactions in [S4N3]+ rings. New J Chem 37:2636–2641

    Google Scholar 

  72. Galán-Mascarós JR, Slawin AMZ, Woollins JD, Williams DJ (1996) π-Facial interactions between Cl and [S4N3]+. Polyhedron 15:4603–4605

    Google Scholar 

  73. Kim D, Tarakeshwar P, Kim KS (2004) Theoretical investigations of anion-π interactions: the role of anions and the nature of π systems. J Phys Chem A 108:1250–1258

    CAS  Google Scholar 

  74. Kim DY, Singh NJ, Lee JW, Kim KS (2008) Cyameluric acid as anion-π type receptor for ClO4 and NO3 : π-Stacked and edge-to-face structures. J Chem Theory Comput 4:1162–1169

    CAS  Google Scholar 

  75. Garau C, Frontera A, Quiñonero D, Ballester P, Costa A, Deyà PM (2003) A topological analysis of the electron density in anion-π interactions. Chem Phys Chem 4:1344–1348

    CAS  Google Scholar 

  76. Quiñonero D, Garau C, Frontera A, Ballester P, Costa A, Deyà PM (2002) Counterintuitive interaction of anions with benzene derivatives. Chem Phys Lett 359:486–492

    Google Scholar 

  77. Bauzá A, Deyà PM, Frontera A, Quiñonero D (2014) Substituent effects in cation-π interactions revisited: a general approach based on intrinsic properties of the arenes. Phys Chem Chem Phys 16:1322–1326

    Google Scholar 

  78. Wheeler SE, Houk KN (2010) Are anion/π interactions actually a case of simple charge−dipole interactions? J Phys Chem A 114:8658–8664

    CAS  Google Scholar 

  79. Garau C, Quiñonero D, Frontera A, Ballester P, Costa A, Deyà PM (2003) Dual binding mode of s-triazine to anions and cations. Org Lett 5:2227–2229

    CAS  Google Scholar 

  80. Garau C, Frontera A, Quiñonero D, Ballester P, Costa A, Deyà PM (2004) Cation-π versus anion-π interactions: energetic, charge transfer, and aromatic aspects. J Phys Chem A 108:9423–9427

    CAS  Google Scholar 

  81. Garau C, Quiñonero D, Frontera A, Ballester P, Costa A, Deyà PM (2003) Anion-π interactions: must the aromatic ring be electron deficient? New J Chem 27:211–214

    CAS  Google Scholar 

  82. Quiñonero D, Frontera A, Garau C, Ballester P, Costa A, Deyà PM (2006) Interplay between cation-π, anion-π and π-π interactions. Chem Phys Chem 7:2487–2491

    Google Scholar 

  83. Quiñonero D, Frontera A, Deyà PM (2008) High-level ab initio study of anion-π interactions in pyridine and pyrazine rings coordinated to Ag(I). Chem Phys Chem 9:397–399

    Google Scholar 

  84. Gural’skiy IA, Escudero D, Frontera A, Solntsev PV, Rusanov EB, Chernega AN, Krautscheid H, Domasevitch KV (2009) 1,2,4,5-Tetrazine: an unprecedented μ4-coordination that enhances ability for anion-π interactions. Dalton Trans 38:2856–2864

    Google Scholar 

  85. Bauzá A, Quiñonero D, Deyà PM, Frontera A (2012) Tuning of the anion-π interaction. Theor Chem Acc 131:1219–1230

    Google Scholar 

  86. Mirzaei M, Eshtiagh-Hosseini H, Lotfian N, Salimi A, Bauzá A, Van Deun R, Decadt R, Barceló-Oliver M., Frontera A (2014) Syntheses, structures, properties and DFT study of hybrid inorganic-organic architectures constructed from trinuclear lanthanide frameworks and Keggin-type polyoxometalates. Dalton Trans 43:1906–1916

    Google Scholar 

  87. Estarellas C, Frontera A, Quiñonero D, Deyà PM (2008) Theoretical and crystallographic study of the dual σ/π binding affinity of quinolizilynium cation. J Chem Theory Comput 4:1981–1989

    CAS  Google Scholar 

  88. Quiñonero D, Frontera A, Escudero D, Ballester P, Costa A, Deyà PM (2007) Theoretical study of anion-π interactions in seven membered rings. Chem Phys Chem 8:1182–1187

    Google Scholar 

  89. Das A, Choudhury SR, Dey B, Yalamanchili SK, Helliwell M, Gamez P, Mukhopadhyay S, Estarellas C, Frontera A (2010) Supramolecular assembly of Mg(II) complexes directed by asociative lone pair-π/ π-π/ π-anion-π/ π-lone pair interactions. J Phys Chem B 114:4998–5009

    CAS  Google Scholar 

  90. Das A, Choudhury SR, Estarellas C, Dey B, Frontera A, Hemming J, Helliwell M, Gamez P, Mukhopadhyay S (2011) Supramolecular assemblies involving anion-π and lone pair-π interactions: experimental observation and theoretical analysis. Cryst Eng Comm 13:4519–4527

    CAS  Google Scholar 

  91. Fiol JJ, Barceló-Oliver M, Tasada A, Frontera A, Terrón A, García-Raso A (2013) Structural characterization, recognition patterns and theoretical calculations of longchain Nalkyl substituted purine and pyrimidine bases as ligands: on the importance of anion-π interactions. Coord Chem Rev 257:2705–2715

    CAS  Google Scholar 

  92. Wang DX, Wang MX (2013) Anion–π interactions: generality, binding strength, and structure. J Am Chem Soc 135:892–897

    CAS  Google Scholar 

  93. Schneebeli ST, Frasconi M, Liu Z, Wu Y, Gardner DM, Strutt NL, Cheng C, Carmieli R, Wasielewski MR, Stoddart JR (2013) Electron sharing and anion-π recognition in molecular triangular prisms. Angew Chem Int Ed 52:13100–13104

    CAS  Google Scholar 

  94. Chifotides HT, Giles ID, Dunbar KR (2013) Supramolecular architectures with π-acidic 3,6-bis(2-pyridyl)-1,2,4,5- tetrazine cavities: role of anion–π interactions in the remarkable stability of Fe(II) metallacycles in solution. J Am Chem Soc 135:3039–3055.

    CAS  Google Scholar 

  95. Bretschneider A, Andrada DM, Dechert S, Meyer S, Mata RA, Meyer F (2013) Preorganized anion traps for exploiting anion-π interactions: an experimental and computational study. Chem Eur J 19:16988–17000

    CAS  Google Scholar 

  96. Ballester P (2013) Experimental quantification of anion-π interactions in solution using neutral host-guest model systems. Acc Chem Res 46:874–884

    CAS  Google Scholar 

  97. Gil-Ramírez G, Escudero-Adán EC, Benet-Buchholz J, Ballester P (2008) Quantitative evaluation of anion-π interactions in solution. Angew Chem Int Ed 47:4114–4118

    Google Scholar 

  98. Adriaenssens L, Gil-Ramírez G, Frontera A, Quiñonero D, Escudero-Adán EC, Ballester P (2014) Thermodynamic characterization of halide-π interactions in solution using “two wall” aryl extended calix[4] pyrroles as model system. J Am Chem Soc 136:3208–3218

    CAS  Google Scholar 

  99. Chang KC, Minami T, Koutník P, Savechenkov PY, Liu Y, Anzenbacher P (2014) Anion binding modes in meso-substituted hexapyrrolic calix[4]pyrrole isomers. J Am Chem Soc 136:1520–1525

    CAS  Google Scholar 

  100. He Q, Han Y, Wang Y, Huang ZT, Wang DX (2014) Size-regulable vesicles based on anion-π interactions. Chem Eur J 20:7486–7491

    CAS  Google Scholar 

  101. Zhao Y, Domoto Y, Orentas E, Beuchat C, Emery D, Mareda J, Sakai N, Matile S (2013) Catalysis with anion-π interactions. Angew Chem Int Ed 52:9940–9943

    CAS  Google Scholar 

  102. Zhao Y, Beuchat C, Domoto Y, Gajewy J, Wilson A, Mareda J, Sakai N, Matile S (2014) Anion-π catalysis. J Am Chem Soc 136:2101–2111

    CAS  Google Scholar 

  103. Zhao Y, Sakai N, Matile S (2014) Enolate chemistry with anion-π interactions. Nature Comm 5:3911

    CAS  Google Scholar 

  104. Oubridge C, Ito N, Evans PR, Teo CH, Nagai K (1994) Crystal-structure at 1.92 Angstrom resolution of the RNA-binding domain of the U1a spliceosomal protein complexed with an RNA hairpin. Nature 372:432–438

    CAS  Google Scholar 

  105. Estarellas C, Frontera A, Quiñonero D, Deyà PM (2011) Anion-π interactions in Flavoproteins. Chem Asian J 6:2316–2318

    CAS  Google Scholar 

  106. Dong C, Flecks S, Unversucht S, Haupt C, van Pee KH, Naismith JH (2005) The structure of tryptophan 7-halogenase (PrnA) suggests a mechanism for regioselective chlorination. Science 309:2216–2219

    CAS  Google Scholar 

  107. Race PR, Lovering AL, Green RM, Ossor A, White SA, Searle PF, Wrighton CJ, Hyde EI (2005) Structural and mechanistic studies of Escherichia Coli nitroreductase with the antibiotic nitrofurazone. Reserved binding orientations in different redox states of the enzyme J Biol Chem 280:13256–13264

    CAS  Google Scholar 

  108. Bauzá A, Quiñonero D, Deyà PM, Frontera A (2013) On the importance of anion-π interactions in the mechanism of sulfide: quinone oxidoreductase. Chem Asian J 8:2708–2713

    Google Scholar 

  109. Cherney M, Zhang Y, Solomonson M, Weiner JH, James MNG (2010) Crystal structure of sulfide:quinone oxidoreductase from Acidithiobacillus Ferrooxidans: insights into sulfidotrophic respiration and detoxification. J Mol Biol 398:292–305

    CAS  Google Scholar 

  110. Pham VH, Yong JJ, Park SJ, Yoon DN, Chung WH, Rhee SK (2008) Molecular analysis of the diversity of the sulfide: quinone reductase (sqr) gene in sediment environments. Microbiol 154:3112–3121

    CAS  Google Scholar 

  111. Johnson E, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen A, Yang W (2010) Revealing non-covalent interactions. J Am Chem Soc 132:6498–6506

    CAS  Google Scholar 

  112. Bauzá A, Quiñonero D, Deyà PM, Frontera A (2014) Long-range effects in anion-π interactions: their crucial role in the inhibition mechanism of Mycobacterium Tuberculosis malate synthase. Chem Eur J 20:6985–6990

    Google Scholar 

  113. McKinney JD, Höner zu Bentrup K, Muñoz-Elías EJ, Miczak A, Chen B, Chan WT, Swenson D, Sacchettini JC, Jacobs WR Jr, Russell DG (2000) Persistence of Mycobacterium Tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738

    CAS  Google Scholar 

  114. Krieger IV, Freundlich JS, Gawandi VB, Roberts JP, Gawandi VB, Sun Q, Owen JL, Fraile MT, Huss SI, Lavandera JL, Ioerger TR, Sacchettini JC (2012) Structure-guided discovery of phenyl-diketo acids as potent inhibitors of M. Tuberculosis malate synthase. Chem Biol 19:1556–1567

    CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to Carol Garau, Xavier Lucas, Daniel Escudero and David Quiñonero with whom we have had the good fortune to work and their names are contained within the pertinent references. We thank CONSOLIDER-Ingenio 2010 (project CSD2010-0065) and the MICINN of Spain (project CTQ2011-27512 FEDER funds) for financial support. We thank the Direcció General de Recerca, Desenvolupament Tecnològic i Innovació del Govern Balear (project 23/2011, FEDER funds) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Frontera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bauzá, A., Deyà, P., Frontera, A. (2015). Anion-π Interactions in Supramolecular Chemistry and Catalysis. In: Scheiner, S. (eds) Noncovalent Forces. Challenges and Advances in Computational Chemistry and Physics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-14163-3_16

Download citation

Publish with us

Policies and ethics