Skip to main content

A Unified View of Halogen Bonding, Hydrogen Bonding and Other σ-Hole Interactions

  • Chapter
  • First Online:
Noncovalent Forces

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 19))

Abstract

The term “σ-hole” refers to a region of diminished electronic density along the extension of a covalent single bond to a hydrogen or an atom of Groups IV—VII. This region often has a positive electrostatic potential through which the atom can interact attractively with a negative site (such as a lone pair of a Lewis base, π electrons or an anion) to form a noncovalent complex. Hydrogen bonding and halogen bonding are the most prominent examples of such σ-hole interactions, although they have long been known experimentally for Groups IV—VI as well (but without the σ-hole label). σ-Holes result from the anisotropic charge distributions of covalently-bonded atoms. It follows from the Hellmann-Feynman theorem that σ-hole interactions can be understood and described as Coulombic, which includes polarization and dispersion. In the context of noncovalent interactions, charge transfer is simply a mathematical formulation of polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Müller-Dethlefs K, Hobza P (2000) Noncovalent interactions: a challenge for experiment and theory. Chem Rev 100:143–167

    Google Scholar 

  2. Engkvist O, Åstrand P-O, Karlström G (2000) Accurate intermolecular potentials obtained from molecular wave functions: bridging the gap between quantum chemistry and molecular simulations. Chem Rev 100:4087–4108

    CAS  Google Scholar 

  3. Chałasiński G, Szczęśniak (2000) State of the art and challenges of the ab initio theory of intermolecular interactions. Chem Rev 100:4227–4252

    Google Scholar 

  4. Braga D, Grepioni F (2000) Intermolecular interactions in nonorganic crystal engineering. Acc Chem Res 33:601–608

    CAS  Google Scholar 

  5. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc Chem Res 38:386–395

    CAS  Google Scholar 

  6. Belkova NV, Shubina ES, Epstein LM (2005) Diverse world of unconventional hydrogen bonds. Acc Chem Res 38:624–631

    CAS  Google Scholar 

  7. Hobza P, Zahradník R, Müller-Dethlefs K (2006) The world of non-covalent interactions: 2006. Collect Czech Chem Commun 71:443–531

    CAS  Google Scholar 

  8. Metrangolo P, Resnati G, eds (2008) Halogen bonding: fundamentals and applications. Springer, Berlin

    Google Scholar 

  9. Stone AJ (2008) Intermolecular potentials. Science 321:787–789

    CAS  Google Scholar 

  10. Legon AC (2010) The halogen bond: an interim perspective. Phys Chem Chem Phys 12:7736–7747

    CAS  Google Scholar 

  11. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757

    CAS  Google Scholar 

  12. Hobza P, Müller-Dethlefs K (2010) Non-Covalent Interactions: Theory and Experiment. Royal Society of Chemistry, Cambridge

    Google Scholar 

  13. Scheiner S (2011) Weak H-Bonds. comparisons of CH–O to NH–O in proteins and PH–N to direct P–N interactions. Phys Chem Chem Phys 13:13860–13872

    CAS  Google Scholar 

  14. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Perspectives on halogen bonding and other σ-hole interactions: lex parsimoniae (Occam’s Razor). Comput Theoret Chem 998:2–8

    CAS  Google Scholar 

  15. Politzer P, Murray JS (2013) Halogen bonding: an interim discussion. Chem Phys Chem 14:278–294

    CAS  Google Scholar 

  16. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189

    CAS  Google Scholar 

  17. Politzer P, Murray JS, Clark T (2014) σ-Hole Bonding: A Physical Interpretation. Topics Curr Chem (in press).

    Google Scholar 

  18. Schneider H-J (2009) Binding mechanisms in supramolecular complexes. Angew Chem Int Ed 48:3924–3977

    CAS  Google Scholar 

  19. Colin M (1814) Ann Chim 91:252

    Google Scholar 

  20. Guthrie F (1863) XXVIII. On the Iodide of Iodammonium. J Chem Soc 16:239–244

    Google Scholar 

  21. Mallet JW (1881) Chem News 44:188

    Google Scholar 

  22. Remsen I, Norris JF (1896) The action of the halogens on the methylamines. Am Chem J 18:90–95

    CAS  Google Scholar 

  23. Rhoussopoulos O (1883) Einwirkung von Chinolin auf Chloroform and Jodoform. Berichte 16:202–203

    Google Scholar 

  24. Blackstock SC, Lorand JP, Kochi JK (1987) Charge-transfer interactions of amines with tetrahalomethanes. X-ray crystal structures of the donor-acceptor complexes of quinuclidine and diazabicyclo[2.2.2]octane with carbon tetrabromide. J Org Chem 52:1451–1460

    CAS  Google Scholar 

  25. Benesi HA, Hildebrand JH (1948) Ultraviolet absorption bands of iodine in aromatic hydrocarbons. J Am Chem Soc 70:2832–2833

    CAS  Google Scholar 

  26. Benesi HA, Hildebrand JH (1949) A Spectrophotometric investigation of the interaction of iodine with Aromatic Hydrocarbons. J Am Chem Soc 71:2703–2707

    CAS  Google Scholar 

  27. Mulliken RS (1952) Molecular compounds and their spectra. II. J Am Chem Soc 74:811–824

    CAS  Google Scholar 

  28. Dahl T, Hassel O (1966) A close relationship between the crystal structure of an acceptor and that of an addition compound. Acta Chem Scand 20:2009

    CAS  Google Scholar 

  29. Bent HA (1968) A structural chemistry of donor-acceptor interactions. Chem Rev 68:587–648

    CAS  Google Scholar 

  30. Olie K, Mijlhoff FC (1969) The crystal structure of POBr3 and intermolecular bonding. Acta Cryst B 25:974–977

    CAS  Google Scholar 

  31. Olie K (1971) The crystal structure of POCl3. Acta Cryst B 27:1459–1460

    CAS  Google Scholar 

  32. Murray-Rust P, Motherwell WDS (1979) Computer retrieval and analysis of molecular geometry. 4. intermolecular interactions. J Am Chem Soc 101:4374–4376

    CAS  Google Scholar 

  33. Murray-Rust P, Stallings WC, Monti CT, Preston RK, Glusker JP (1983) Intermolecular interactions of the carbon-fluorine bond: the crystallographic environment of fluorinated carboxylic acids and related structures. J Am Chem Soc 105:3206–3214

    CAS  Google Scholar 

  34. Ramasubbu N, Parthasarathy R, Murray-Rust P (1986) Angular preferences of intermolecular forces around halogen centers: preferred directions of approach of electrophiles and nucleophiles around carbon-halogen bond. J Am Chem Soc 108:4308–4314

    CAS  Google Scholar 

  35. Dumas J-M, Kern M, Janier-Dubry JL (1976) Cryoscopic and calorimetric study of mx4-polar organic base interactions (M = C, Si, X = Cl, Br)—influence of element and of halogen. Bull Soc Chim Fr 11–1:1785–1790

    Google Scholar 

  36. Martire DE, Sheridan JP, King JW, O’Donnell SE (1976) Thermodynamics of molecular association. 9. An NMR study of hydrogen bonding of chloroform and bromoform to Di-n-octyl ether, Di-n-octyl thioether, and Di-n-Octylmethylamine. J Am Chem Soc 98:3101–3106

    CAS  Google Scholar 

  37. Imakubo T, Sawa H, Kato R (1995) Novel radical cation salts of organic π-donors containing iodine atom(s): the first application of strong intermolecular I–X (X = CN, halogen atom) interaction to molecular conductors. Synth Metals 73:117–122

    CAS  Google Scholar 

  38. Imakubo T, Tajima N, Tamura M, Kato R, Nishio Y, Kajita K (2003) Supramolecular organic conductor θ-(DIETS)2[Au(CN)4]: unique crystal structure and superconductivity under Uniaxial Strain (DIETS = Diodo(ethylenedithio) diselenadithiafulvalene). Synth Metals 133–134:181–183

    Google Scholar 

  39. Amico V, Meille SV, Corradi E, Messina MT, Resnati G (1998) Perfluorocarbon-hydrocarbon self-assembly. 1D infinite chain formation driven by nitrogen—iodine interactions. J Am Chem Soc 120:8261–8262

    CAS  Google Scholar 

  40. Rissanen K (2008) Halogen bonded supramolecular complexes and networks. Cryst Eng Comm 10:1107–1113

    CAS  Google Scholar 

  41. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Halogen bonding in supramolecular chemistry. Angew Chem Int Ed 47:6114–6127

    CAS  Google Scholar 

  42. Priimagi A, Cavallo G, Metrangolo P, Resnati G (2013) The halogen bond in the design of functional supramolecular materials: recent advances. Acc Chem Res 46:2686–2695

    CAS  Google Scholar 

  43. Bruckmann A, Pena MA, Bolm C (2008) Organocatalysis through halogen-bond activation. Synlett 6:900–902

    Google Scholar 

  44. Kniep F, Jungbauer SH, Zhang Q, Walter SM, Schindler S, Schnapperelle I, Herdtweck E, Huber SM (2013) Organocatalysis by neutral multidentate halogen-bond donors. Angew Chemie Int Ed 52:7028–7032 (and references cited)

    CAS  Google Scholar 

  45. Auffinger P, Hays FA, Westhof E, Shing Ho P (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci 48:16789–16794

    Google Scholar 

  46. Lu Y, Wang Y, Zhu W (2010) Nonbonding interactions of organic Halogens in biological systems: implications for drug discovery and Biomolecular design. Phys Chem Chem Phys 12:4543–4551

    CAS  Google Scholar 

  47. Murray JS, Riley KE, Politzer P, Clark T (2010) Directional weak intermolecular interactions: σ-Hole bonding. Aust J Chem 63:1598–1607.

    CAS  Google Scholar 

  48. Rosenfield RE Jr, Parthasarathy R, Dunitz JD (1977) Directional preferences of nonbonded atomic contacts with divalent sulfur. 1. Electrophiles and nucleophiles. J Am Chem Soc 99:4860–4862

    CAS  Google Scholar 

  49. Guru Row TN Parthasarthy R (1981) Directional preferences of nonbonded atomic contacts with divalent sulfur in terms of its orbital orientations. 2. S–S interactions and nonspherical shape of sulfur in crystals. J Am Chem Soc 103:477–479

    Google Scholar 

  50. Ramasubbu N, Parthasarathy R (1987) Stereochemistry of incipient electrophilic and nucleophilic reactions at divalent selenium center: electrophilic-nucleophilic pairing and anisotropic shape of Se in Se–Se interactions. Phosphorus Sulfur 31:221–229

    CAS  Google Scholar 

  51. Politzer P, Murray JS (1998) Statistical analysis of the molecular surface electrostatic potential: an approach to describing noncovalent interactions in condensed phases. J Mol Struct (Theochem) 425:107–114

    Google Scholar 

  52. Politzer P, Murray JS (2002) The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Acc 108:134–142

    CAS  Google Scholar 

  53. Murray JS, Politzer P (2011) The electrostatic potential: an overview. WIREs Comp Mol Sci 1:153–163

    CAS  Google Scholar 

  54. Stewart RF (1979) On the mapping of electrostatic properties from bragg diffraction data. Chem Phys Lett 65:335–342

    CAS  Google Scholar 

  55. Politzer P, Truhlar DG, eds (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum Press, New York

    Google Scholar 

  56. Klein CL, Stevens ED (1988) Charge density studies of drug molecules. In Liebman JF, Goldberg A (eds) Structure and reactivity. VCH Publishers, New York, ch 2, pp 25–64

    Google Scholar 

  57. Bader RWF, Carroll MT, Cheeseman JR, Chang C (1987) Properties of atoms in molecules: atomic volumes. J Am Chem Soc 109:7968–7979

    CAS  Google Scholar 

  58. Brinck T, Murray JS, Politzer P (1992) Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions. Int J Quantum Chem 44(Suppl 19):57–64

    Google Scholar 

  59. Brinck T, Murray JS, Politzer P (1993) Molecular electrostatic potentials and local ionization energies of group V—VII hydrides and their anions. Relationships for aqueous and gas-phase acidities. Int J Quantum Chem 48(Suppl 20):73–88

    CAS  Google Scholar 

  60. Murray JS, Paulsen K, Politzer P (1994) Molecular surface electrostatic potentials in the analysis of non-hydrogen-bonding noncovalent interactions. Proc Indian Acad Sci (Chem Sci) 106:267–275

    CAS  Google Scholar 

  61. Awwadi FF, Willett RD, Peterson KA, Twamley B (2006) The nature of halogen-halogen synthons: crystallographic and theoretical studies. Chem Eur J 12:8952–8960

    CAS  Google Scholar 

  62. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296

    CAS  Google Scholar 

  63. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311

    CAS  Google Scholar 

  64. Burling FT, Goldstein BM (1992) Computational studies of nonbonded sulfur-oxygen and selenium-oxygen interactions in the thiazole and selenazole nucleosides. J Am Chem Soc 114:2313–2320

    CAS  Google Scholar 

  65. Murray JS, Lane P, Politzer P (2008) Simultaneous σ-hole and hydrogen bonding by sulfur- and selenium-containing heterocycles. Int J Quantum Chem 108:2770–2781

    CAS  Google Scholar 

  66. Clark T, Murray JS, Lane P, Politzer P (2008) Why are dimethyl sulfoxide and dimethyl sulfone such good solvents? J Mol Model 14:689–697

    CAS  Google Scholar 

  67. Murray JS, Lane P, Politzer (2009) Expansion of the σ-hole concept. J Mol Model 15:723–729

    CAS  Google Scholar 

  68. Murray JS, Lane P, Politzer P (2007) A predicted new type of directional noncovalent interaction. Int J Quantum Chem 107:2286–2292

    CAS  Google Scholar 

  69. Politzer P, Murray JS, Janjić GV, Zarić SD (2014) σ-hole interactions of covalently-bonded nitrogen, phosphorus and arsenic: a survey of crystal structures. Crystals 4:12–31

    Google Scholar 

  70. Delgado-Barrio G, Prat RF (1975) Deformed hartree-fock solutions for atoms. III. convergent iterative process and results for O−−. Phys Rev A 12:2288–2297.

    CAS  Google Scholar 

  71. Sen KD, Politzer P (1989) Characteristic features of the electrostatic potentials of singly-negative monoatomic ions. J Chem Phys 90:4370–4372

    CAS  Google Scholar 

  72. Feynman RP (1939) Forces in Molecules. Phys Rev 56:340–343

    CAS  Google Scholar 

  73. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaca

    Google Scholar 

  74. Stevens ED (1979) Experimental electron density distributions of molecular chlorine. Mol Phys 37:27–45

    CAS  Google Scholar 

  75. Nyburg SC, Faerman CH (1985) A revision of van der Waals atomic Radii for molecular crystals: N, O, F, S, Cl, Se, Br and I bonded to carbon. Acta Cryst B 41:274–279

    Google Scholar 

  76. Ikuta S (1990) Anisotropy of electron density distribution around atoms in molecules: N, P, O and S atoms. J Mol Struct (Theochem) 205:191–201

    Google Scholar 

  77. Tsirelson VG, Zou PF, Tang T-H, Bader RFW (1995) Topological Definition of crystal structure determination of the bonded interactions in solid molecular chlorine. Acta Cryst A 51:143–153

    Google Scholar 

  78. Torii H (2003) The role of atomic quadrupoles in intermolecular electrostatic interactions of polar and nonpolar molecules. J Chem Phys 119:2192–2198

    CAS  Google Scholar 

  79. Bilewicz E, Rybarczyk-Pirek AJ, Dubis AT, Grabowski SJ (2007) Halogen bonding in crystal structures of 1-methylpyrrol-2-yl trichloromethyl ketone. J Mol Struct 829:208–211

    CAS  Google Scholar 

  80. Hennemann M, Murray JS, Politzer P, Riley KE, Clark T (2012) Polarization-induced σ-holes and hydrogen bonding. J Mol Model 18:2461–2469

    CAS  Google Scholar 

  81. Clark T, Murray JS, Politzer P (2014) Role of polarization in halogen bonds. Aust J Chem 67:451–456

    CAS  Google Scholar 

  82. Clark T, Murray JS, Politzer P (2015) Correct electrostatic treatment of non-covalent interactions: the importance of polarisation. WIREs Comp Mol Sci, DOI: 10.1002/wcms.1210

    Google Scholar 

  83. Riley KE, Hobza P (2008) Investigations into the nature of halogen bonding including symmetry adapted perturbation theory analyses. J Chem Theory Comp 4:232–242

    CAS  Google Scholar 

  84. Solimannejad M, Gharabaghi M, Scheiner S (2011) SH–N and SH–P blue-shifting H-bonds and N–P interactions in complexes pairing HSN with amines and phosphines. J Chem Phys 134:24312(1–6)

    Google Scholar 

  85. Politzer P, Murray JS, Concha MC (2007) Halogen bonding and the design of new materials: organic bromides, chlorides and even fluorides as donors. J Mol Model 13:643–650

    CAS  Google Scholar 

  86. Chopra D, Guru Row TN (2011) Role of organic fluorine in crystal engineering. Cryst Eng Comm 13:2175–2186

    CAS  Google Scholar 

  87. Metrangolo P, Murray JS, Pilati T, Politzer P, Resnati G, Terraneo G (2011) Fluorine-centered halogen bonding: a factor in recognition phenomena and reactivity. Cryst Growth Des 11:4238–4246

    CAS  Google Scholar 

  88. Murray JS, Lane P, Clark T, Politzer P (2007) σ-hole bonding: molecules containing group VI atoms. J Mol Model 13:1033–1038

    CAS  Google Scholar 

  89. Murray JS, Macaveiu L, Politzer P (2014) Factors affecting the strengths of σ-hole electrostatic potentials. J Comput Sci 5:590–596

    Google Scholar 

  90. Bundhun A, Ramasami P, Murray JS, Politzer P (2013) Trends in σ-hole strengths and interactions of F3MX molecules (M = C, Si, Ge and X = F, Cl, Br, I). J Mol Model 19:2739–2746

    CAS  Google Scholar 

  91. Wilson CC (2000) Single crystal neutron diffraction from molecular materials.World Scientific, Singapore

    Google Scholar 

  92. Parkin A, Harte SM, Goeta AE, Wilson CC (2004) Imaging proton migration from X-rays and neutrons. New J Chem 28:718–721

    CAS  Google Scholar 

  93. Murray JS, Politzer P (1991). Correlations between the solvent hydrogen-bond-donating parameter α and the calculated molecular surface electrostatic potential. J Org Chem 56:6715–6717

    CAS  Google Scholar 

  94. Shields ZP-I, Murray JS, Politzer (2010) Directional tendencies of halogen and hydrogen bonding. Int J Quantum Chem 110:2823–2832

    CAS  Google Scholar 

  95. Clark T (2013) σ-holes. WIREs Comput Mol Sci 3:13–20

    CAS  Google Scholar 

  96. Kollman P, McKelvey J, Johansson A, Rothenberg S (1975) Theoretical studies of hydrogen-bonded dimers. Complexes involving HF, H2O, NH3, CH1, H2S, PH3, HCN, HNC, HCP, CH2NH, H2CS, H2CO, CH4, CF3H, C2H2, C2H4, C6H6, F and H3O +. J Am Chem Soc 97:955–965

    CAS  Google Scholar 

  97. Politzer P, Daiker KC (1981) Models for chemical reactivity. In: Deb BM (ed) The Force Concept in Chemistry. Van Nostrand Reinhold Co, ch 6.

    Google Scholar 

  98. Legon AC, Millen DJ (1982) Determination of properties of hydrogen-bonded dimers by rotational spectroscopy and a classification of dimer geometries. Faraday Discuss Chem Soc 73:71–87

    CAS  Google Scholar 

  99. Buckingham AD, Fowler PW (1983) Do electrostatic interactions predict structures of Van der Waals complexes? J Chem Phys 79:6426–6428

    CAS  Google Scholar 

  100. Buckingham AD, Fowler PW (1985) A Model for the geometries of Van der Waals complexes. Can J Chem 63:2018–2025

    CAS  Google Scholar 

  101. Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2013) Halogen bond tunability II: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds. J Mol Model 19:4651–4659

    CAS  Google Scholar 

  102. Legon AC (1999) Prereactive complexes of dihalogens XY with Lewis bases B in the gas phase: a systematic case for the halogen analogue B–XY of the hydrogen bond B–HX. Angew Chem Int Ed 38:2686–2714

    Google Scholar 

  103. Legon AC (2010) The halogen bond: an interim perspective. Phys Chem Chem Phys 12:7736–7747

    CAS  Google Scholar 

  104. Bondi A (1964) van der Waals volumes and Radii. J Phys Chem 68:441–451

    CAS  Google Scholar 

  105. Rowland RS, Taylor R (1996) Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals Radii. J Phys Chem 100:7384–7391

    CAS  Google Scholar 

  106. Politzer P, Murray JS, Lane P (2007) σ-hole bonding and hydrogen bonding: competitive interactions. Int J Quantum Chem 107:3046–3052.

    CAS  Google Scholar 

  107. Aakeröy CB, Fasulo M, Shultheiss N, Desper J, Moore C (2007) Structural competition between hydrogen bonds and halogen bonds. J Am Chem Soc 129:13772–13773

    Google Scholar 

  108. Alkorta I, Blanco F, Solimannejad M, Elguero J (2008) Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases. J Phys Chem A 112:10856–10863

    CAS  Google Scholar 

  109. Di Paolo T Sandorfy C (1974) On the biological importance of the hydrogen bond breaking potency of fluorocarbons. Chem Phys Lett 26:466–469

    CAS  Google Scholar 

  110. Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Halogen bonding versus hydrogen bonding in driving self-assembly processes. Angew Chem Int Ed 39:1782–1786

    CAS  Google Scholar 

  111. Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2011) Halogen bond tunability I: the effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine and iodine. J Mol Model 17:3309–3318

    CAS  Google Scholar 

  112. Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009) Br–O complexes as probes of factors affecting halogen bonding: interactions of bromobenzenes and bromopyrimidines with acetone. J Chem Theory Comput 5:155–16

    CAS  Google Scholar 

  113. Politzer P, Murray JS (2013) Enthalpy and entropy factors in gas phase halogen bonding: compensation and competition. Cryst Eng Comm 15:3145–3150

    CAS  Google Scholar 

  114. Lu X, Li H, Zhu X, Zhu W, Liu H (2011) How does halogen bonding behave in solution? A Theoretical study using implicit solvation model. J Phys Chem A 115:4467–4475

    CAS  Google Scholar 

  115. Damm E, Hassel O, Romming C (1965) X-ray analysis of the (1:1) addition compounds of 1,4-Dioxan with oxalyl chloride resp. Oxalyl bromide. Acta Chem Scand 19:1159–1165

    CAS  Google Scholar 

  116. Güttinger P (1932) Das Verhalten von Atomen in magnetischen Drehfeld. Z Phys 73:169–184

    Google Scholar 

  117. Pauli W (1933) Principles of Wave Mechanics, Handbuch der Physik, 24. Springer, Berlin, p. 162

    Google Scholar 

  118. Hellmann H (1933) Zur Rolle der kinetischen Electronenenergie für die zwischenatomaren Kräfte. Z Phys 85:180–190

    CAS  Google Scholar 

  119. Feynman RP (1939) Forces in molecules. Phys Rev 56:340–343

    CAS  Google Scholar 

  120. Levine IN (2000) Quantum chemistry, 5th ed. Prentice-Hall, Upper Saddle River

    Google Scholar 

  121. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Google Scholar 

  122. Ratajczak H, Orville-Thomas WJ (1976) Charge transfer theory of hydrogen bonds: relations between vibrational, spectra and energy of hydrogen bonds. Chem Phys 17:197–216 (and references cited)

    CAS  Google Scholar 

  123. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Defining the hydrogen bond: an account. Pure Appl Chem 83:1619–1636 (and references cited)

    CAS  Google Scholar 

  124. Berlin T (1951) Binding regions in diatomic molecules. J Chem Phys 19:208–213

    CAS  Google Scholar 

  125. Bader RFW (2006) Pauli repulsions exist only in the eye of the beholder. Chem Eur J 12:2896–2901

    CAS  Google Scholar 

  126. Scerri ER (2000) Have orbitals really been observed? J Chem Ed 77:1492–1494

    CAS  Google Scholar 

  127. Solimannejad M, Malekani M, Alkorta I (2010) Cooperative and dimunitive unusual weak bonding in F3C–X–HMgH–Y and F3C–X–Y–HMgH Trimers (X = Cl, Br; Y = HCN and HNC). J Phys Chem A 114:12106–12111

    CAS  Google Scholar 

  128. Scheiner S (2011) On the Properties of X–N Noncovalent Interactions for First-, Second-, and Third-Row X Atoms. J Chem Phys 134:164313(1–9)

    Google Scholar 

  129. Grabowski SJ, Bilewicz E (2006) Cooperative halogen bonding effect—Ab Initio calculations on H2CO–(ClF)n complexes. Chem Phys Lett 427:51–55

    CAS  Google Scholar 

  130. Del Bene JE Alkorta I Elguero J (2010) Do traditional, chlorine-shared and ion-pair halogen bonds exist? An Ab Initio investigation of FCl:CNX complexes. J Phys Chem A 114:12958–12962

    CAS  Google Scholar 

  131. Politzer P, Murray JS (2012) Halogen bonding and beyond: factors influencing the nature of CN–R and SiN–R complexes with FCl and Cl2. Theor Chem Acc 131:1114(1–10)

    Google Scholar 

  132. Hobza P, Zahradnik R (1992) An essay on the theory and calculations of intermolecular interactions. Int J Quantum Chem 42:581–590

    CAS  Google Scholar 

  133. Cramer CJ (2002) Essentials of computational chemistry. Wiley, Chichester

    Google Scholar 

  134. Hirschfelder JO, Eliason MA (1967) Electrostatic Hellmann-Feynman theorem applied to the long-range interaction of two hydrogen atoms. J Chem Phys 47:1164–1169

    CAS  Google Scholar 

  135. Hunt KLC (1990) Dispersion dipoles and dispersion forces: proof of Feynman’s “Conjecture” and generalization to interacting molecules of arbitrary symmetry. J Chem Phys 92:1180–1187

    CAS  Google Scholar 

  136. Stone AJ, Price SL (1988) Some new ideas in the theory of intermolecular forces: anisotropic atom-atom potentials. J Phys Chem 92:3325–3335

    CAS  Google Scholar 

  137. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    CAS  Google Scholar 

  138. Sokalski WA, Roszak SM (1991) Efficient techniques for the decomposition of intermolecular interaction energy at SCF level and beyond. J Mol Struct (Theochem) 234:387–400

    Google Scholar 

  139. Chen J, Martínez TJ (2007) QTPIE: charge transfer with polarization current equalization: a fluctuating charge model with correct asymptotics. Chem Phys Lett 438:315–320

    CAS  Google Scholar 

  140. Clark T (2014) Directional electrostatic bonding. In: Frenking G (ed) The chemical bond: chemical bonding across the periodic table. Wiley-VCH, ch. 18.

    Google Scholar 

  141. Hermansson K (2002) Blue-shifting hydrogen bonds. J Phys Chem A 106:4695–4702

    CAS  Google Scholar 

  142. Qian W, Krimm S (2002) Vibrational spectroscopy of hydrogen bonding. Origin of the different behavior of the C–H–O hydrogen bond. J Phys Chem A 106:6628–6636

    CAS  Google Scholar 

  143. Wang W, Wang NB, Zheng W, Tian A (2004) Theoretical study on the blueshifting halogen bond. J Phys Chem A 108:1799–1805

    CAS  Google Scholar 

  144. Murray JS, Concha MC, Lane P, Hobza P, Politzer P (2008) Blue shifts vs. red shifts in σ-hole bonding. J Mol Model 14:699–704

    CAS  Google Scholar 

  145. Stone AJ, Misquitta AJ (2009) Charge-transfer in symmetry-adapted perturbation theory. Chem Phys Lett 473:201–205

    CAS  Google Scholar 

  146. Politzer P, Harris RR (1970) Properties of atoms in molecules. I. A proposed definition of the charge of an atom in a molecule. J Am Chem Soc 92:6451–6454

    CAS  Google Scholar 

  147. Meister J, Schwarz WHE (1994) Principal components of ionicity. J Phys Chem 98:8245–8252

    CAS  Google Scholar 

  148. Wiberg KB, Rablen PR (1993) Comparison of atomic charges derived via different procedures. J Comput Chem 14:1504–1518

    CAS  Google Scholar 

  149. Price SL (1996) Applications of realistic electrostatic modelling to molecules in complexes, solids and proteins. J Chem Soc Faraday Trans 92:2997–3008

    CAS  Google Scholar 

  150. Politzer P, Murray JS, Concha MC (2008) σ-hole bonding between like atoms. A fallacy of atomic charges. J Mol Model 14:659–665

    CAS  Google Scholar 

  151. Dobeš P, Řezáč J, Fanfrlík J, Otyepka M, Hobza P (2011) Semiempirical quantum mechanical method PM6-DH2X describes the geometry and energetics of CK2-inhibitor complexes involving halogen bonds well, while the empirical potential fails. J Phys Chem B 115:8581–8589

    Google Scholar 

  152. Ibrahim MAA (2011) Molecular mechanical study of halogen bonding in drug discovery. J Comput Chem 32:2564–2574

    CAS  Google Scholar 

  153. Kolař M, Hobza P (2012) On extension of the current biomolecular empirical force field for the description of halogen bonds. J Chem Theory Comput 8:1325–1333

    Google Scholar 

  154. Carter M, Rappé AK, Shing Ho P (2012) Scalable anisotropic shape and electrostatic models for biological bromine halogen bonds. J Chem Theory Comput 8:2461–2473

    CAS  Google Scholar 

  155. Jorgensen WL, Schyman P (2012) Treatment of halogen bonding in the opls-aa force field: application to potent anti-hiv agents. J Chem Theory Comput 8:3895–3901

    CAS  Google Scholar 

  156. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) σ-holes, π-holes and electrostatically-driven interactions. J Mol Model 18:541–548

    CAS  Google Scholar 

  157. Murray JS, Shields ZP-I, Seybold PG, Politzer P (2015) Intuitive and counterintuitive noncovalent interactions of aromatic π regions with the hydrogen and nitrogen of HCN. J Comput Sci DOI: 10.1006/j.jocs.02.001

    Google Scholar 

  158. Isaacson W (2007) Einstein: his life and universe. Simon and Schuster, New York, p. 549

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Politzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Politzer, P., Murray, J. (2015). A Unified View of Halogen Bonding, Hydrogen Bonding and Other σ-Hole Interactions. In: Scheiner, S. (eds) Noncovalent Forces. Challenges and Advances in Computational Chemistry and Physics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-14163-3_10

Download citation

Publish with us

Policies and ethics