Skip to main content

PARP and Carcinogenesis

  • Chapter
  • First Online:

Part of the book series: Cancer Drug Discovery and Development ((CDD&D,volume 83))

Abstract

Cancer is a complex disease that results from the successive accumulation of genetic and epigenetic alterations. These, together with transcriptional deregulation, and aberrations in post-translational modification, are the forces driving carcinogenesis. During the carcinogenesis, cells suffer environmental stress and genetic, epigenetic and other changes are induced, with each of these changes affecting further evolution of cancerous cells. Blocking these changes is important for cancer prevention and treatment. For couples of decades, poly(ADP-ribosylation) (PARylation) in the processes of carcinogenesis has been studied by using various models and human genetic and epidemiological studies and further mechanistic analysis at the molecular, cellular and in vivo levels has been conducted. The obtained evidence is being utilized for establishing effective and non-invasive strategies for cancer prevention. In this review we discuss how PARylation reaction and related molecules are involved in multi-step carcinogenesis. Molecules function in PARylation and involved in carcinogenesis are listed in Table 5.1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Khodyreva SN et al (2010) Apurinic/apyrimidinic (AP) site recognition by the 5'-dRP/AP lyase in poly(ADP-ribose) polymerase-1 (PARP-1). Proc Natl Acad Sci U S A 107(51):22090–22095

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Lonskaya I et al (2005) Regulation of poly(ADP-ribose) polymerase-1 by DNA structure-specific binding. J Biol Chem 280(17):17076–17083

    CAS  PubMed  Google Scholar 

  3. Rulten SL et al (2011) PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol Cell 41(1):33–45

    CAS  PubMed  Google Scholar 

  4. Lehtio L et al (2009) Structural basis for inhibitor specificity in human poly(ADP-ribose) polymerase-3. J Med Chem 52(9):3108–3111

    CAS  PubMed  Google Scholar 

  5. Loseva O et al (2010) PARP-3 is a mono-ADP-ribosylase that activates PARP-1 in the absence of DNA. J Biol Chem 285(11):8054–8060

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Kleine H, Luscher B (2009) Learning how to read ADP-ribosylation. Cell 139(1):17–19

    CAS  PubMed  Google Scholar 

  7. Mortusewicz O, Ame JC, Schreiber V, Leonhardt H (2007) Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells. Nucleic Acids Res 35(22):7665–7675

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Vodenicharov MD, Ghodgaonkar MM, Halappanavar SS, Shah RG, Shah GM (2005) Mechanism of early biphasic activation of poly(ADP-ribose) polymerase-1 in response to ultraviolet B radiation. J Cell Sci 118(Pt 3):589–599

    CAS  PubMed  Google Scholar 

  9. Tan XH et al (2005) Frequent mutation related with overexpression of DNA polymerase beta in primary tumors and precancerous lesions of human stomach. Cancer Lett 220(1):101–114

    CAS  PubMed  Google Scholar 

  10. Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9(8):619–631

    CAS  PubMed  Google Scholar 

  11. Haince JF et al (2007) Ataxia telangiectasia mutated (ATM) signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents. J Biol Chem 282(22):16441–16453

    CAS  PubMed  Google Scholar 

  12. Mitra S, Boldogh I, Izumi T, Hazra TK (2001) Complexities of the DNA base excision repair pathway for repair of oxidative DNA damage. Environ Mol Mutagen 38(2–3):180–190

    CAS  PubMed  Google Scholar 

  13. Heale JT et al (2006) Condensin I interacts with the PARP-1-XRCC1 complex and functions in DNA single-strand break repair. Mol Cell 21(6):837–848

    CAS  PubMed  Google Scholar 

  14. Ame JC et al (1999) PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J Biol Chem 274(25):17860–17868

    CAS  PubMed  Google Scholar 

  15. Saxena A et al (2002) Poly(ADP-ribose) polymerase 2 localizes to mammalian active centromeres and interacts with PARP-1, Cenpa, Cenpb and Bub3, but not Cenpc. Hum Mol Genet 11(19):2319–2329

    CAS  PubMed  Google Scholar 

  16. Kutuzov MM et al (2013) Interaction of PARP-2 with DNA structures mimicking DNA repair intermediates and consequences on activity of base excision repair proteins. Biochimie 95(6):1208–1215

    CAS  PubMed  Google Scholar 

  17. Ali AA et al (2012) The zinc-finger domains of PARP1 cooperate to recognize DNA strand breaks. Nat Struct Mol Biol 19(7):685–692

    CAS  PubMed  Google Scholar 

  18. Spagnolo L, Barbeau J, Curtin NJ, Morris EP, Pearl LH (2012) Visualization of a DNA-PK/PARP1 complex. Nucleic Acids Res 40(9):4168–4177

    CAS  PubMed Central  PubMed  Google Scholar 

  19. von Kobbe C et al (2003) Central role for the Werner syndrome protein/poly(ADP-ribose) polymerase 1 complex in the poly(ADP-ribosyl)ation pathway after DNA damage. Mol Cell Biol 23(23):8601–8613

    Google Scholar 

  20. Hochegger H et al (2006) PARP-1 protects homologous recombination from interference by Ku and Ligase IV in vertebrate cells. EMBO J 25(6):1305–1314

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Audebert M, Salles B, Weinfeld M, Calsou P (2006) Involvement of polynucleotide kinase in a poly(ADP-ribose) polymerase-1-dependent DNA double-strand breaks rejoining pathway. J Mol Biol 356(2):257–265

    CAS  PubMed  Google Scholar 

  22. Nicolas L et al (2010) Loss of poly(ADP-ribose) polymerase-2 leads to rapid development of spontaneous T-cell lymphomas in p53-deficient mice. Oncogene 29(19):2877–2883

    CAS  PubMed  Google Scholar 

  23. Huber A, Bai P, de JM Murcia, de G Murcia (2004) PARP-1, PARP-2 and ATM in the DNA damage response: functional synergy in mouse development. DNA Repair (Amst) 3(8–9):1103–1108

    CAS  Google Scholar 

  24. Boehler C, Dantzer F (2011) PARP-3, a DNA-dependent PARP with emerging roles in double-strand break repair and mitotic progression. Cell Cycle 10(7):1023–1024

    CAS  PubMed  Google Scholar 

  25. West SC (2003) Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol 4(6):435–445

    CAS  PubMed  Google Scholar 

  26. Yu X, Chen J (2004) DNA damage-induced cell cycle checkpoint control requires CtIP, a phosphorylation-dependent binding partner of BRCA1 C-terminal domains. Mol Cell Biol 24(21):9478–9486

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Yun MH, Hiom K (2009) CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature 459(7254):460–463

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Schlegel BP, Jodelka FM, Nunez R (2006) BRCA1 promotes induction of ssDNA by ionizing radiation. Cancer Res 66(10):5181–5189

    CAS  PubMed  Google Scholar 

  29. Wong AK, Pero R, Ormonde PA, Tavtigian SV, Bartel PL (1997) RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J Biol Chem 272(51):31941–31944

    CAS  PubMed  Google Scholar 

  30. Mukhopadhyay A et al (2012) Clinicopathological features of homologous recombination-deficient epithelial ovarian cancers: sensitivity to PARP inhibitors, platinum, and survival. Cancer Res 72(22):5675–5682

    CAS  PubMed  Google Scholar 

  31. Li M, Yu X (2013) Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell 23(5):693–704

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Hegan DC et al (2010) Inhibition of poly(ADP-ribose) polymerase down-regulates BRCA1 and RAD51 in a pathway mediated by E2F4 and p130. Proc Natl Acad Sci U S A 107(5):2201–2206

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Bryant HE et al (2009) PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J 28(17):2601–2615

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Meyerson M, Pellman D (2011) Cancer genomes evolve by pulverizing single chromosomes. Cell 144(1):9–10

    CAS  PubMed  Google Scholar 

  35. Shibata A et al (2005) PARP-1 deficiency causes an increase of deletion mutations and insertions/rearrangements in vivo after treatment with an alkylating agent. Oncogene 24(8):1328–1337

    CAS  PubMed  Google Scholar 

  36. Shibata A et al (2009) Role of PARP-1 in suppressing spontaneous deletion mutation in the liver and brain of mice at adolescence and advanced age. Mutation Res 664(1–2):20–27

    CAS  PubMed  Google Scholar 

  37. Mabley JG, Wallace R, Pacher P, Murphy K, Szabo C (2007) Inhibition of poly(adenosine diphosphate-ribose) polymerase by the active form of vitamin D. Int J Mol Med 19(6):947–952

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Jones DT, Gronych J, Lichter P, Witt O, Pfister SM (2012) MAPK pathway activation in pilocytic astrocytoma. Cell Mol Life Sci 69(11):1799–1811

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Prasad S, Ravindran J, Aggarwal BB (2010) NF-kappaB and cancer: how intimate is this relationship. Mol Cell Biochem 336(1–2):25–37

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Wang Z, Li Y, Sarkar FH (2010) Notch signaling proteins: legitimate targets for cancer therapy. Curr Protein Pept Sci 11(6):398–408

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Courtney KD, Corcoran RB, Engelman JA (2010) The PI3K pathway as drug target in human cancer. J Clin Oncol 28(6):1075–1083

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Hu T, Li C (2010) Convergence between Wnt-beta-catenin and EGFR signaling in cancer. Mol Cancer 9:236

    PubMed Central  PubMed  Google Scholar 

  43. Miwa M, Masutani M (2007) PolyADP-ribosylation and cancer. Cancer Sci 98(10):1528–1535

    CAS  PubMed  Google Scholar 

  44. Quintas-Cardama A et al (2012) Reverse phase protein array profiling reveals distinct proteomic signatures associated with chronic myeloid leukemia progression and with chronic phase in the CD34-positive compartment. Cancer 118(21):5283–5292

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Vidakovic M et al (2009) PARP-1 expression in the mouse is controlled by an autoregulatory loop: PARP-1 binding to an upstream S/MAR element and to a novel recognition motif in its promoter suppresses transcription. J Mol Biol 388(4):730–750

    CAS  PubMed  Google Scholar 

  46. Reale A, Matteis GD, Galleazzi G, Zampieri M, Caiafa P (2005) Modulation of DNMT1 activity by ADP-ribose polymers. Oncogene 24(1):13–19

    CAS  PubMed  Google Scholar 

  47. Chang J et al (2010) Nicotinamide adenine dinucleotide (NAD)-regulated DNA methylation alters CCCTC-binding factor (CTCF)/cohesin binding and transcription at the BDNF locus. Proc Natl Acad Sci U S A 107(50):21836–21841

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Guastafierro T et al (2008) CCCTC-binding factor activates PARP-1 affecting DNA methylation machinery. J Biol Chem 283(32):21873–21880

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Krishnakumar R et al (2008) Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes. Science 319(5864):819–821

    CAS  PubMed  Google Scholar 

  50. Zhou Y, Feng X, Koh DW (2010) Enhanced DNA accessibility and increased DNA damage induced by the absence of poly(ADP-ribose) hydrolysis. Biochemistry 49(34):7360–7366

    CAS  PubMed  Google Scholar 

  51. Krishnakumar R, Kraus WL (2010) PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway. Mol Cell 39(5):736–749

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Martinez-Zamudio R, Ha HC (2012) Histone ADP-ribosylation facilitates gene transcription by directly remodeling nucleosomes. Mol Cell Biol 32(13):2490–2502

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Petesch SJ, Lis JT (2012) Activator-induced spread of poly(ADP-ribose) polymerase promotes nucleosome loss at Hsp70. Mol Cell 45(1):64–74

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Chou DM et al (2010) A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proc Natl Acad Sci U S A 107(43):18475–18480

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Martin N et al (2009) PARP-1 transcriptional activity is regulated by sumoylation upon heat shock. EMBO J 28(22):3534–3548

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Ng RK et al (2008) Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat Cell Biol 10(11):1280–1290

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Nozaki T et al (1999) Syncytiotrophoblastic giant cells in teratocarcinoma-like tumors derived from PARP-disrupted mouse embryonic stem cells. Proc Natl Acad Sci U S A 96(23):13345–13350

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Solary E, Bernard OA, Tefferi A, Fuks F, Vainchenker W (2013) The Ten-Eleven Translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. Leukemia 28(3):485–496

    PubMed  Google Scholar 

  59. Beaulieu N et al (2002) An essential role for DNA methyltransferase DNMT3B in cancer cell survival. J Biol Chem 277(31):28176–28181

    CAS  PubMed  Google Scholar 

  60. Ji Y, Tulin AV (2009) Poly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteins modulates splicing. Nucleic Acids Res 37(11):3501–3513

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Leung AK et al (2011) Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol Cell 42(4):489–499

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Simbulan-Rosenthal CM et al (2000) Misregulation of gene expression in primary fibroblasts lacking poly(ADP-ribose) polymerase. Proc Natl Acad Sci U S A 97(21):11274–11279

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Ogino H et al (2007) Loss of PARP-1 affects gene expression profile in a genome-wide manner in ES cells and liver cells. BMC Genomics 8:41

    PubMed Central  PubMed  Google Scholar 

  64. Galluzzi L et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19(1):107–120

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Wang Y, Dawson VL, Dawson TM (2009) Poly(ADP-ribose) signals to mitochondrial AIF: a key event in parthanatos. Exp Neurol 218(2):193–202

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Yu SW et al (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297(5579):259–263

    CAS  PubMed  Google Scholar 

  67. Susin SA et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397(6718):441–446

    CAS  PubMed  Google Scholar 

  68. Vahsen N et al (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23(23):4679–4689

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Wang Y et al (2011) Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci Signal 4(167):ra20

    PubMed Central  PubMed  Google Scholar 

  70. Andrabi SA et al (2006) Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci U S A 103(48):18308–18313

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Yu SW et al (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci U S A 103(48):18314–18319

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Dutta C et al (2012) BCL2 suppresses PARP1 function and nonapoptotic cell death. Cancer Res 72(16):4193–4203

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Davalos AR, Coppe JP, Campisi J, Desprez PY (2010) Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev 29(2):273–283

    PubMed Central  PubMed  Google Scholar 

  74. Heldin CH, Vanlandewijck M, Moustakas A (2012) Regulation of EMT by TGFbeta in cancer. FEBS Lett 586(14):1959–1970

    CAS  PubMed  Google Scholar 

  75. Chew V, Toh HC, Abastado JP (2012) Immune microenvironment in tumor progression: characteristics and challenges for therapy. J Oncol 2012:608406

    PubMed Central  PubMed  Google Scholar 

  76. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196(4):395–406

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Yao H, Sundar IK, Gorbunova V, Rahman I (2013) P21-PARP-1 pathway is involved in cigarette smoke-induced lung DNA damage and cellular senescence. PLoS One 8(11):e80007

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Fujimori H, Shikanai M, Teraoka H, Masutani M, Yoshioka KI (2012) Induction of cancerous stem cells during embryonic stem cell differentiation. J Biol Chem 287(44):36777–36791

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Guetg C, Scheifele F, Rosenthal F, Hottiger MO, Santoro R (2012) Inheritance of silent rDNA chromatin is mediated by PARP1 via noncoding RNA. Mol Cell 45(6):790–800

    CAS  PubMed  Google Scholar 

  80. Nozaki T et al (2013) PARP-1 deficiency in ES cells promotes invasive and metastatic lesions accompanying induction of trophoblast giant cells during tumorigenesis in uterine environment. Pathology Intl 63(8):408–414

    CAS  Google Scholar 

  81. Yoo YD, Huang CT, Zhang X, Lavaute TM, Zhang SC (2011) Fibroblast growth factor regulates human neuroectoderm specification through ERK1/2-PARP-1 pathway. Stem Cells 29(12):1975–1982

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Vaca P et al (2008) Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells. Exp Cell Res 314(5):969–974

    CAS  PubMed  Google Scholar 

  83. Roper SJ et al (2014) ADP-ribosyltransferases PARP1 and PARP7 safeguard pluripotency of ES cells. Nucleic Acids Res 42(14):8914–8927

    PubMed Central  PubMed  Google Scholar 

  84. Fujimori H et al (2013) The H19 induction triggers trophoblast lineage commitment in mouse ES cells. Biochem Biophys Res Commun 436(2):313–318

    CAS  PubMed  Google Scholar 

  85. Meyer-Ficca ML et al (2009) Disruption of poly(ADP-ribose) homeostasis affects spermiogenesis and sperm chromatin integrity in mice. Biol Reprod 81(1):46–55

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Meyer-Ficca ML, Scherthan H, Burkle A, Meyer RG (2005) Poly(ADP-ribosyl)ation during chromatin remodeling steps in rat spermiogenesis. Chromosoma 114(1):67–74

    CAS  PubMed  Google Scholar 

  87. Dantzer F et al (2006) Poly(ADP-ribose) polymerase-2 contributes to the fidelity of male meiosis I and spermiogenesis. Proc Natl Acad Sci U S A 103(40):14854–14859

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Farres J et al (2013) PARP-2 is required to maintain hematopoiesis following sublethal gamma-irradiation in mice. Blood 122(1):44–54

    CAS  PubMed  Google Scholar 

  89. Raaijmakers MH et al (2010) Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464(7290):852–857

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Yamamoto M et al (2013) NF-kappaB non-cell-autonomously regulates cancer stem cell populations in the basal-like breast cancer subtype. Nat Commun 4:2299

    PubMed  Google Scholar 

  91. Shimo T et al (2012) Antitumor and anticancer stem cell activity of a poly ADP-ribose polymerase inhibitor olaparib in breast cancer cells. Breast Cancer 21(1):75–80

    PubMed  Google Scholar 

  92. Venere M et al (2014) Therapeutic targeting of constitutive PARP activation compromises stem cell phenotype and survival of glioblastoma-initiating cells. Cell Death Differ 21(2):258–269

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Zitvogel L, Kepp O, Kroemer G (2010) Decoding cell death signals in inflammation and immunity. Cell 140(6):798–804

    CAS  PubMed  Google Scholar 

  94. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418(6894):191–195

    CAS  PubMed  Google Scholar 

  95. Hofmann MA et al (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97(7):889–901

    CAS  PubMed  Google Scholar 

  96. Quintana FJ, Cohen IR (2005) Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J Immunol 175(5):2777–2782

    CAS  PubMed  Google Scholar 

  97. Bours MJ, Swennen EL, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112(2):358–404

    CAS  PubMed  Google Scholar 

  98. Kono H, Chen CJ, Ontiveros F, Rock KL (2010) Uric acid promotes an acute inflammatory response to sterile cell death in mice. J Clin Invest 120(6):1939–1949

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Ditsworth D, Zong WX, Thompson CB (2007) Activation of poly(ADP)-ribose polymerase (PARP-1) induces release of the pro-inflammatory mediator HMGB1 from the nucleus. J Biol Chem 282(24):17845–17854

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Tang D, Billiar TR, Lotze MT (2012) A Janus tale of two active high mobility group box 1 (HMGB1) redox states. Mol Med 18:1360–1362

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Rodriguez MI et al (2013) PARP-1 regulates metastatic melanoma through modulation of vimentin-induced malignant transformation. PLoS Genetics 9(6):e1003531

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Gao Y et al (2014) Overexpression of RNF146 in non-small cell lung cancer enhances proliferation and invasion of tumors through the Wnt/beta-catenin signaling pathway. PloS One 9(1):e85377

    PubMed Central  PubMed  Google Scholar 

  103. Yamagami T, Miwa A, Takasawa S, Yamamoto H, Okamoto H (1985) Induction of rat pancreatic B-cell tumors by the combined administration of streptozotocin or alloxan and poly(adenosine diphosphate ribose) synthetase inhibitors. Cancer Res 45(4):1845–1849

    CAS  PubMed  Google Scholar 

  104. Tsujiuchi T et al (1990) Possible involvement of poly ADP-ribosylation in phenobarbital promotion of rat hepatocarcinogenesis. Carcinogenesis 11(10):1783–1787

    CAS  PubMed  Google Scholar 

  105. Denda A, Tsutsumi M, Yokose Y, Eimoto H, Konishi Y (1988) Effects of 3-aminobenzamide on the induction of gamma-glutamyl-transpeptidase-positive foci by various chemicals in rat liver. Cancer Lett 39(1):29–36

    CAS  PubMed  Google Scholar 

  106. Rakieten N et al (1971) Pancreatic islet cell tumors produced by the combined action of streptozotocin and nicotinamide. Proc Soc Exp Biol Med 137(1):280–283

    CAS  PubMed  Google Scholar 

  107. Chen L (2011) Medicinal chemistry of sirtuin inhibitors. Curr Med Chem 18(13):1936–1946

    CAS  PubMed  Google Scholar 

  108. Tsutsumi M et al (2001) Increased susceptibility of poly(ADP-ribose) polymerase-1 knockout mice to nitrosamine carcinogenicity. Carcinogenesis 22(1):1–3

    CAS  PubMed  Google Scholar 

  109. Tong WM et al (2002) Synergistic role of Ku80 and poly(ADP-ribose) polymerase in suppressing chromosomal aberrations and liver cancer formation. Cancer Res 62(23):6990–6996

    CAS  PubMed  Google Scholar 

  110. Gunji A et al (2006) PARP-1 deficiency does not increase the frequency of tumors in the oral cavity and esophagus of ICR/129 Sv mice by 4-nitroquinoline 1-oxide, a carcinogen producing bulky adducts. Cancer Lett 241(1):87–92

    CAS  PubMed  Google Scholar 

  111. Ogawa K et al (2006) PARP-1 deficiency does not enhance liver carcinogenesis induced by 2-amino-3-methylimidazo[4,5-f]quinoline in mice. Cancer Lett 236(1):32–38

    CAS  PubMed  Google Scholar 

  112. Morrison C et al (1997) Genetic interaction between PARP and DNA-PK in V(D)J recombination and tumorigenesis. Nat Genet 17(4):479–482

    CAS  PubMed  Google Scholar 

  113. Rybanska I et al (2013) PARP1 and DNA-PKcs synergize to suppress p53 mutation and telomere fusions during T-lineage lymphomagenesis. Oncogene 32(14):1761–1771

    CAS  PubMed  Google Scholar 

  114. Tong WM et al (2007) Poly(ADP-ribose) polymerase-1 plays a role in suppressing mammary tumourigenesis in mice. Oncogene 26(26):3857–3867

    CAS  PubMed  Google Scholar 

  115. Tanori M et al (2008) PARP-1 cooperates with Ptc1 to suppress medulloblastoma and basal cell carcinoma. Carcinogenesis 29(10):1911–1919

    CAS  PubMed  Google Scholar 

  116. Lebel M, Lavoie J, Gaudreault I, Bronsard M, Drouin R (2003) Genetic cooperation between the Werner syndrome protein and poly(ADP-ribose) polymerase-1 in preventing chromatid breaks, complex chromosomal rearrangements, and cancer in mice. Am J Pathol 162(5):1559–1569

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Conde C et al (2001) Loss of poly(ADP-ribose) polymerase-1 causes increased tumour latency in p53-deficient mice. EMBO J 20(13):3535–3543

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Raval-Fernandes S, Kickhoefer VA, Kitchen C, Rome LH (2005) Increased susceptibility of vault poly(ADP-ribose) polymerase-deficient mice to carcinogen-induced tumorigenesis. Cancer Res 65(19):8846–8852

    CAS  PubMed  Google Scholar 

  119. Kato J et al (2011) ADP-ribosylarginine hydrolase regulates cell proliferation and tumorigenesis. Cancer Res 71(15):5327–5335

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Min W, Cortes U, Herceg Z, Tong WM, Wang ZQ (2010) Deletion of the nuclear isoform of poly(ADP-ribose) glycohydrolase (PARG) reveals its function in DNA repair, genomic stability and tumorigenesis. Carcinogenesis 31(12):2058–2065

    CAS  PubMed  Google Scholar 

  121. Mashimo M, Kato J, Moss J (2013) ADP-ribosyl-acceptor hydrolase 3 regulates poly (ADP-ribose) degradation and cell death during oxidative stress. Proc Natl Acad Sci U S A 110(47):18964–18969

    CAS  PubMed Central  PubMed  Google Scholar 

  122. de Murcia JM et al (1997) Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci U S A 94(14):7303–7307

    PubMed Central  PubMed  Google Scholar 

  123. Menissier de Murcia J et al (2003) Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J 22(9):2255–2263

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Shirai H et al (2013) Parg deficiency confers radio-sensitization through enhanced cell death in mouse ES cells exposed to various forms of ionizing radiation. Biochem Biophys Res Commun 435(1):100–106

    CAS  PubMed  Google Scholar 

  125. Cortes U et al (2004) Depletion of the 110-kilodalton isoform of poly(ADP-ribose) glycohydrolase increases sensitivity to genotoxic and endotoxic stress in mice. Mol Cell Biol 24(16):7163–7178

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Epstein JH, Cleaver JE (1992) 3-Aminobenzamide can act as a cocarcinogen for ultraviolet light-induced carcinogenesis in mouse skin. Cancer Res 52(14):4053–4054

    CAS  PubMed  Google Scholar 

  127. King BS, Cooper KL, Liu KJ, Hudson LG (2012) Poly(ADP-ribose) contributes to an association between poly(ADP-ribose) polymerase-1 and xeroderma pigmentosum complementation group A in nucleotide excision repair. J Biol Chem 287(47):39824–39833

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Robu M et al (2013) Role of poly(ADP-ribose) polymerase-1 in the removal of UV-induced DNA lesions by nucleotide excision repair. Proc Natl Acad Sci U S A 110(5):1658–1663

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Lakatos P et al (2013) 3-Aminobenzamide protects primary human keratinocytes from UV-induced cell death by a poly(ADP-ribosyl)ation independent mechanism. Biochim Biophys Acta 1833(3):743–751

    CAS  PubMed  Google Scholar 

  130. Toller IM et al (2011) Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells. Proc Natl Acad Sci U S A 108(36):14944–14949

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Silva-Fernandes IJ, da TA Silva, Agnez-Lima LF, Ferreira MV, Rabenhorst SH (2012) Helicobacter pylori genotype and polymorphisms in DNA repair enzymes: where do they correlate in gastric cancer? J Surgical Oncol 106(4):448–455

    CAS  Google Scholar 

  132. Ariumi Y, Turelli P, Masutani M, Trono D (2005) DNA damage sensors ATM, ATR, DNA-PKcs, and PARP-1 are dispensable for human immunodeficiency virus type 1 integration. J Virol 79(5):2973–2978

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Bueno MT et al (2013) Poly(ADP-ribose) polymerase 1 promotes transcriptional repression of integrated retroviruses. J Virol 87(5):2496–2507

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Dandri M et al (2002) Increase in de novo HBV DNA integrations in response to oxidative DNA damage or inhibition of poly(ADP-ribosyl)ation. Hepatology 35(1):217–223

    CAS  PubMed  Google Scholar 

  135. Lee JS et al (2011) No associations of polymorphisms in ADPRT with hepatitis B virus clearance and hepatocellular carcinoma occurrence in a Korean population. Hepatology Res 41(3):250–257

    CAS  Google Scholar 

  136. Ariumi Y et al (2008) The DNA damage sensors ataxia-telangiectasia mutated kinase and checkpoint kinase 2 are required for hepatitis C virus RNA replication. J Virol 82(19):9639–9646

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Kashuba E et al (2005) Epstein-Barr virus-encoded EBNA-5 binds to Epstein-Barr virus-induced Fte1/S3a protein. Exp Cell Res 303(1):47–55

    CAS  PubMed  Google Scholar 

  138. Hassumi-Fukasawa MK et al (2012) Expression of BAG-1 and PARP-1 in precursor lesions and invasive cervical cancer associated with human papillomavirus (HPV). Pathol Oncol Res 18(4):929–937

    CAS  PubMed  Google Scholar 

  139. Kerns JA, Emerman M, Malik HS (2008) Positive selection and increased antiviral activity associated with the PARP-containing isoform of human zinc-finger antiviral protein. PLoS Genetics 4(1):e21

    PubMed Central  PubMed  Google Scholar 

  140. Lockett KL et al (2004) The ADPRT V762A genetic variant contributes to prostate cancer susceptibility and deficient enzyme function. Cancer Res 64(17):6344–6348

    CAS  PubMed  Google Scholar 

  141. Hao B et al (2004) Identification of genetic variants in base excision repair pathway and their associations with risk of esophageal squamous cell carcinoma. Cancer Res 64(12):4378–4384

    CAS  PubMed  Google Scholar 

  142. Zhang X et al (2005) Polymorphisms in DNA base excision repair genes ADPRT and XRCC1 and risk of lung cancer. Cancer Res 65(3):722–726

    CAS  PubMed  Google Scholar 

  143. Ye F, Cheng Q, Hu Y, Zhang J, Chen H (2012) PARP-1 Val762Ala polymorphism is associated with risk of cervical carcinoma. PloS One 7(5):e37446

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Sakiyama T et al (2005) Association of amino acid substitution polymorphisms in DNA repair genes TP53, POLI, REV1 and LIG4 with lung cancer risk. Int J Cancer 114(5):730–737

    CAS  PubMed  Google Scholar 

  145. Cao WH et al (2007) Analysis of genetic variants of the poly(ADP-ribose) polymerase-1 gene in breast cancer in French patients. Mut Res 632(1–2):20–28

    CAS  Google Scholar 

  146. Brevik A et al (2010) Polymorphisms in base excision repair genes as colorectal cancer risk factors and modifiers of the effect of diets high in red meat. Cancer Epidemiol Biomarkers Prev 19(12):3167–3173

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Tuncel H et al (2012) PARP6, a mono(ADP-ribosyl) transferase and a negative regulator of cell proliferation, is involved in colorectal cancer development. Int J Oncol 41(6):2079–2086

    CAS  PubMed  Google Scholar 

  148. Boyonoski AC et al (2002) Niacin deficiency decreases bone marrow poly(ADP-ribose) and the latency of ethylnitrosourea-induced carcinogenesis in rats. J Nutr 132(1):108–114

    CAS  PubMed  Google Scholar 

  149. Kirkland JB (2003) Niacin and carcinogenesis. Nutr Cancer 46(2):110–118

    CAS  PubMed  Google Scholar 

  150. Bartleman AP, Jacobs R, Kirkland JB (2008) Niacin supplementation decreases the incidence of alkylation-induced nonlymphocytic leukemia in Long-Evans rats. Nutr Cancer 60(2):251–258

    CAS  PubMed  Google Scholar 

  151. Benavente CA, Jacobson MK, Jacobson EL (2009) NAD in skin: therapeutic approaches for niacin. Curr Pharm Des 15(1):29–38

    CAS  PubMed  Google Scholar 

  152. Shames, DS et al (2013) Loss of NAPRT1 expression by tumor- specific promoter methylation provides a novel predictive biomarker for NAMPT inhibitors. Clin Cancer Res 19:6912–6923

    CAS  PubMed  Google Scholar 

  153. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10(4):293–301

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Anders CK et al (2010) Poly(ADP-Ribose) polymerase inhibition: “targeted” therapy for triple-negative breast cancer. Clin Cancer Res 16(19):4702–4710

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Audeh MW et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376(9737):245–251

    CAS  PubMed  Google Scholar 

  156. Fong PC et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. New Eng J Med 361(2):123–134

    CAS  PubMed  Google Scholar 

  157. Tutt A et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376(9737):235–244

    CAS  PubMed  Google Scholar 

  158. Patel AG, Sarkaria JN, Kaufmann SH (2011) Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci U S A 108(8):3406–3411

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Murai J et al (2012) Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors. Cancer Res 72(21):5588–5599

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Hay T et al (2005) Efficient deletion of normal Brca2-deficient intestinal epithelium by poly(ADP-ribose) polymerase inhibition models potential prophylactic therapy. Cancer Res 65(22):10145–10148

    CAS  PubMed  Google Scholar 

  161. Kitagawa T, Hara M, Sano T, Sugimura T (1998) The concept of Tenju-gann, or “natural-end cancer”. Cancer 83(6):1061–1065

    CAS  PubMed  Google Scholar 

  162. Sukhanova M, Khodyreva S, Lavrik O (2010) Poly(ADP-ribose) polymerase 1 regulates activity of DNA polymerase beta in long patch base excision repair. Mutat Res 685(1–2):80–89

    CAS  PubMed  Google Scholar 

  163. Masson M et al (1998) XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 18(6):3563–3571

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Prasad R et al (2014) Suicidal cross-linking of PARP-1 to AP site intermediates in cells undergoing base excision repair. Nucleic Acids Res 42(10):6337–6351

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Schreiber V et al (2002) Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem 277:23028

    CAS  PubMed  Google Scholar 

  166. Wei L et al (2013) Damage response of XRCC1 at sites of DNA single strand breaks is regulated by phosphorylation and ubiquitylation after degradation of poly(ADP-ribose). J Cell Sci 126(Pt 19):4414–4423

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Leppard JB, Dong Z, Mackey ZB, Tomkinson AE (2003) Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair. Mol Cell Biol 23(16):5919–5927

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Paddock MN et al (2011) Competition between PARP-1 and Ku70 control the decision between high-fidelity and mutagenic DNA repair. DNA Repair 10(3):338–343

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Rouleau M et al (2007) PARP-3 associates with polycomb group bodies and with components of the DNA damage repair machinery. J Cell Biochem 100(2):385–401

    CAS  PubMed  Google Scholar 

  170. Liu Y, Kadyrov FA, Modrich P (2011) PARP-1 enhances the mismatch-dependence of 5'-directed excision in human mismatch repair in vitro. DNA Repair 10(11):1145–1153

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Pines A et al (2012) PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J Cell Biol 199(2):235–249

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Luijsterburg MS et al (2012) DDB2 promotes chromatin decondensation at UV-induced DNA damage. J Cell Biol 197(2):267–281

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Lyakhovich A et al (2011) Fanconi anemia protein FANCD2 inhibits TRF1 polyADP-ribosylation through tankyrase1-dependent manner. Genome Integr 2(1):4

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Kanai M et al (2007) Inhibition of Crm1-p53 interaction and nuclear export of p53 by poly(ADP-ribosyl)ation. Nat Cell Biol 9(10):1175–1183

    CAS  PubMed  Google Scholar 

  175. Won J et al (2006) Dose-dependent UV stabilization of p53 in cultured human cells undergoing apoptosis is mediated by poly(ADP-ribosyl)ation. Mol Cells 21(2):218–223

    CAS  PubMed  Google Scholar 

  176. Orlando G, Khoronenkova SV, Dianova, II, Parsons JL, Dianov GL (2014) ARF induction in response to DNA strand breaks is regulated by PARP1. Nucleic Acids Res 42(4):2320–2329

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Tong WM et al (2003) Null mutation of DNA strand break-binding molecule poly(ADP-ribose) polymerase causes medulloblastomas in p53(-/-) mice. Am J Pathol 162(1):343–352

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Robert I, Dantzer F, Reina-San-Martin B (2009) PARP1 facilitates alternative NHEJ, whereas PARP2 suppresses IgH/c-myc translocations during immunoglobulin class switch recombination. J Exp Med 206(5):1047–1056

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Nozaki FHT, Kamada N, Ueda O, Takato T, Nakagama H, Sugimura T, Suzuki H, Masutani M (2001) Hyperploidy of embryonic fibroblasts derived from PARP-1 knockout mouse Proc Japan Acad Series B 77:121

    Google Scholar 

  180. Wang ZQ et al (1997) PARP is important for genomic stability but dispensable in apoptosis. Genes Dev 11(18):2347–2358

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Third Term Comprehensive 10-Year Strategy for Cancer Control (10103833) from the Ministry of Health, Labor and Welfare of Japan, from the MEXT of Japan (22300343), and a Grant-in-Aid for Cancer Research from the Princess Takamatsu Cancer Research Fund.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, J., Sato, A., Fujimori, H., Miki, Y., Masutani, M. (2015). PARP and Carcinogenesis. In: Curtin, N., Sharma, R. (eds) PARP Inhibitors for Cancer Therapy. Cancer Drug Discovery and Development, vol 83. Humana Press, Cham. https://doi.org/10.1007/978-3-319-14151-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14151-0_5

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-14150-3

  • Online ISBN: 978-3-319-14151-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics