Skip to main content

TIPs: Tankyrase Interacting Proteins

  • Chapter
  • First Online:
PARP Inhibitors for Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D,volume 83))

Abstract

Tankyrase 1 and tankyrase 2 are “card carrying” members of the poly(ADP-ribose) polymerase (PARP) family of enzymes. PARPs use NAD + as a substrate to generate ADP-ribose polymers on protein acceptors. For over thirty years PARP-1 reigned supreme as the original and only known protein with this unusual enzymatic activity. Then, beginning in 1998 new functionally distinct PARPs, tankyrase 1 among them, were reported. Tankyrase 1 was found in a two-hybrid screen with the telomere-specific DNA binding protein TRF1. Subsequently in 2000, a closely related homolog tankyrase 2 was found in a two-hybrid screen with the insulin-responsive amino peptidase (IRAP). Tankyrases have a catalytic PARP domain in common with PARP-1, but are distinguished by a large ankyrin repeat domain that serves as a platform for numerous, diverse protein binding partners, resulting in a remarkable range of biological activities involved in telomere function, inherited disease, and cancer. With the recent discovery of potent tankyrase-specific small molecule inhibitors, understanding the diverse functions of tankyrases has become more than just a fascinating cell biological puzzle. Elucidation of tankyrase function will pave the way for future therapeutic strategies, while at the same time provide insights into potential deleterious side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaminker PG, Kim SH, Taylor RD, Zebarjadian Y, Funk WD, Morin GB, Yaswen P, Campisi J (2001) TANK2, a new TRF1-associated PARP, causes rapid induction of cell death upon overexpression. J Biol Chem 13:Epub ahead of print

    Google Scholar 

  2. Zhu L, Smith S, de Lange T, Seldin MF (1999) Chromosomal mapping of the tankyrase gene in human and mouse. Genomics 57:320–321

    Article  CAS  PubMed  Google Scholar 

  3. Smith S, Giriat I, Schmitt A, de Lange T (1998) Tankyrase, a poly(ADP-ribose) polymerase at human telomeres [see comments]. Science 282:1484–1487

    Article  CAS  PubMed  Google Scholar 

  4. Cook BD, Dynek JN, Chang W, Shostak G, Smith S (2002) Role for the related poly(ADP-Ribose) polymerases tankyrase 1 and 2 at human telomeres. Mol Cell Biol 22:332–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. De Rycker M Price CM (2004) Tankyrase polymerization is controlled by its sterile alpha motif and poly(ADP-ribose) polymerase domains. Mol Cell Biol 24:9802–9812

    Article  PubMed Central  PubMed  Google Scholar 

  6. De Rycker M Venkatesan RN Wei C Price CM (2003) Vertebrate tankyrase domain structure and sterile alpha motif (SAM)-mediated multimerization. Biochem J 372:87–96

    Article  PubMed Central  PubMed  Google Scholar 

  7. Sbodio JI, Lodish HF, Chi NW (2002) Tankyrase-2 oligomerizes with tankyrase-1 and binds to both TRF1 (telomere-repeat-binding factor 1) and IRAP (insulin-responsive aminopeptidase). Biochem J 361:451–459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Seimiya H, Smith S (2002) The telomeric poly(ADP-ribose) polymerase, tankyrase 1, contains multiple binding sites for telomeric repeat binding factor 1 (TRF1) and a novel acceptor, 182-kDa tankyrase-binding protein (TAB182). J Biol Chem 277:14116–14126

    Article  CAS  PubMed  Google Scholar 

  9. Sbodio JI, Chi NW (2002) Identification of a tankyrase-binding motif shared by IRAP, TAB182, and human TRF1 but not mouse TRF1. NuMA contains this RXXPDG motif and is a novel tankyrase partner. J Biol Chem 277:31887–31892

    Article  CAS  PubMed  Google Scholar 

  10. Guettler S, LaRose J, Petsalaki E, Gish G, Scotter A, Pawson T, Rottapel R, Sicheri F (2011) Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for cherubism disease. Cell 147:1340–1354

    Article  CAS  PubMed  Google Scholar 

  11. Kuimov AN, Kuprash DV, Petrov VN, Vdovichenko KK, Scanlan MJ, Jongeneel CV, Lagarkova MA, Nedospasov SA (2001) Cloning and characterization of TNKL, a member of tankyrase gene family. Genes Immun 2:52–55

    Article  CAS  PubMed  Google Scholar 

  12. Lyons RJ, Deane R, Lynch DK, Ye ZS, Sanderson GM, Eyre HJ, Sutherland GR, Daly RJ (2001) Identification of a novel human Tankyrase through its interaction with the adapter protein Grb14. J Biol Chem 22:17172–17180

    Article  Google Scholar 

  13. Monz D, Munnia A, Comtesse N, Fischer U, Steudel WI, Feiden W, Glass B, Meese EU (2001) Novel tankyrase-related gene detected with meningioma-specific sera. Clin Cancer Res 7:113–119

    CAS  PubMed  Google Scholar 

  14. Dynek JN, Smith S (2004) Resolution of sister telomere association is required for progression through mitosis. Science 304:97–100

    Article  CAS  PubMed  Google Scholar 

  15. Chang P, Coughlin M, Mitchison TJ (2005a) Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nat Cell Biol 7:1133–1139

    Article  CAS  PubMed  Google Scholar 

  16. Kim MK, Smith S (2014) Persistent telomere cohesion triggers a prolonged anaphase. Mol Biol Cell 25:30–40

    Article  PubMed Central  PubMed  Google Scholar 

  17. Chiang YJ, Nguyen ML, Gurunathan S, Kaminker P, Tessarollo L, Campisi J, Hodes RJ (2006) Generation and characterization of telomere length maintenance in tankyrase 2-deficient mice. Mol Cell Biol 26:2037–2043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hsiao SJ, Poitras MF, Cook BD, Liu Y, Smith S (2006) Tankyrase 2 poly(ADP-ribose) polymerase domain-deleted mice exhibit growth defects but have normal telomere length and capping. Mol Cell Biol 26:2044–2054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Chiang YJ, Hsiao SJ, Yver D, Cushman SW, Tessarollo L, Smith S, Hodes RJ (2008) Tankyrase 1 and tankyrase 2 are essential but redundant for mouse embryonic development. PloS One 3:e2639

    Article  PubMed Central  PubMed  Google Scholar 

  20. Yeh TY, Beiswenger KK, Li P, Bolin KE, Lee RM, Tsao TS, Murphy AN, Hevener AL, Chi NW (2009). Hypermetabolism, hyperphagia, and reduced adiposity in tankyrase-deficient mice. Diabetes 58:2476–2485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Asou H, Matsui H, Ozaki Y, Nagamachi A, Nakamura M, Aki D, Inaba T (2009) Identification of a common microdeletion cluster in 7q21.3 subband among patients with myeloid leukemia and myelodysplastic syndrome. Biochem Biophys Res Commun 383:245–251

    Article  CAS  PubMed  Google Scholar 

  22. Chong L, van Steensel B, Broccoli D, Erdjument-Bromage H, Hanish J, Tempst P, de Lange T (1995) A human telomeric protein. Science 270:1663–1667

    Article  CAS  PubMed  Google Scholar 

  23. Smith S, de Lange T (1999) Cell cycle dependent localization of the telomeric PARP, tankyrase, to nuclear pore complexes and centrosomes. J Cell Sci 112:3649–3656

    CAS  PubMed  Google Scholar 

  24. Smith S, de Lange T (2000) Tankyrase promotes telomere elongation in human cells. Curr Biol 10:1299–1302

    Article  CAS  PubMed  Google Scholar 

  25. Chang W, Dynek JN, Smith S (2003) TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres. Genes Dev 17:1328–1333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Donigian JR, de Lange T (2007) The role of the poly(ADP-ribose) polymerase tankyrase1 in telomere length control by the TRF1 component of the shelterin complex. J Biol Chem 282:22662–22667

    Article  CAS  PubMed  Google Scholar 

  27. Hsiao SJ, Smith S (2008) Tankyrase function at telomeres, spindle poles, and beyond. Biochimie 90:83–92

    Article  CAS  PubMed  Google Scholar 

  28. Scherthan H, Jerratsch M, Li B, Smith S, Hulten M, Lock T, de Lange T (2000) Mammalian meiotic telomeres: protein composition and redistribution in relation to nuclear pores. Mol Biol Cell 11:4189–4203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Nasmyth K, Haering CH (2009) Cohesin: its roles and mechanisms. Annu Rev Genet 43:525–558

    Article  CAS  PubMed  Google Scholar 

  30. Peters JM, Nishiyama T (2012) Sister chromatid cohesion. Cold Spring Harb Perspect Biol 4:a011130

    Google Scholar 

  31. Bisht KK, Daniloski Z, Smith S (2013) SA1 binds directly to DNA via its unique AT-hook to promote sister chromatid cohesion at telomeres. J Cell Sci 126:3493–3503

    Google Scholar 

  32. Canudas S, Houghtaling BR, Kim JY, Dynek JN, Chang WG, Smith S (2007) Protein requirements for sister telomere association in human cells. Embo J 26:4867–4878

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Canudas S, Smith S (2009) Differential regulation of telomere and centromere cohesion by the Scc3 homologues SA1 and SA2, respectively, in human cells. J Cell Biol 187:165–173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Bisht KK, Dudognon C, Chang WG, Sokol ES, Ramirez A, Smith S (2012) GDP-mannose-4,6-dehydratase is a cytosolic partner of tankyrase 1 that inhibits its poly(ADP-ribose) polymerase activity. Mol Cell Biol 32:3044–3053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Hsiao SJ, Smith S (2009) Sister telomeres rendered dysfunctional by persistent cohesion are fused by NHEJ. J Cell Biol 184:515–526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Ofir R, Yalon-Hacohen M, Segev Y, Schultz A, Skorecki KL, Selig S (2002) Replication and/or separation of some human telomeres is delayed beyond S-phase in pre-senescent cells. Chromosoma 111:147–155

    Article  CAS  PubMed  Google Scholar 

  37. Yalon M, Gal S, Segev Y, Selig S, Skorecki KL (2004) Sister chromatid separation at human telomeric regions. J Cell Sci 117:1961–1970

    Article  CAS  PubMed  Google Scholar 

  38. d’Adda di Fagagna F Reaper PM Clay-Farrace L Fiegler H Carr P Von Zglinicki T Saretzki G Carter NP Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    Article  Google Scholar 

  39. Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM, Bucci G, Dobreva M, Matti V, Beausejour CM, Herbig U, Longhese MP, d’Adda di Fagagna F (2012) Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 14:355–365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Bogan JS (2012) Regulation of glucose transporter translocation in health and diabetes. Annu Rev Biochem 81:507–532

    Article  CAS  PubMed  Google Scholar 

  41. Chi NW, Lodish HF (2000) Tankyrase is a Golgi-Associated MAP Kinase Substrate that Interacts with IRAP in GLUT4 vesicles. J Biol Chem 275:38437–38444

    Article  CAS  PubMed  Google Scholar 

  42. Yeh TY, Sbodio JI, Tsun ZY, Luo B, Chi NW (2007) Insulin-stimulated exocytosis of GLUT4 is enhanced by IRAP and its partner tankyrase. Biochem J 402:279–290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Radulescu AE, Cleveland DW (2010) NuMA after 30 years: the matrix revisited. Trends Cell Biol 20:214–222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Silk AD, Holland AJ, Cleveland DW (2009) Requirements for NuMA in maintenance and establishment of mammalian spindle poles. J Cell Biol 184:677–690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Desbuquois B, Carre N, Burnol AF (2013) Regulation of insulin and type 1 insulin-like growth factor signaling and action by the Grb10/14 and SH2B1/B2 adaptor proteins. FEBS J 280:794–816

    CAS  PubMed  Google Scholar 

  46. Lau NC, Kolkman A, van Schaik FM, Mulder KW, Pijnappel WW, Heck AJ, Timmers HT (2009) Human Ccr4-Not complexes contain variable deadenylase subunits. Biochem J 422:443–453

    Article  CAS  PubMed  Google Scholar 

  47. Chang W, Dynek JN, Smith S (2005b) NuMA is a major acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in mitosis. Biochem J 391:177–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Jackson RS 2nd, Placzek W, Fernandez A, Ziaee S, Chu CY, Wei J, Stebbins J, Kitada S, Fritz G, Reed JC, Chung LW, Pellecchia M, Bhowmick NA (2012) Sabutoclax, a Mcl-1 antagonist, inhibits tumorigenesis in transgenic mouse and human xenograft models of prostate cancer. Neoplasia 14:656–665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Bae J, Donigian JR, Hsueh AJ (2003) Tankyrase 1 interacts with Mcl-1 proteins and inhibits their regulation of apoptosis. J Biol Chem 278:5195–5204

    Article  CAS  PubMed  Google Scholar 

  50. Fuchs U, Rehkamp G, Haas OA, Slany R, Konig M, Bojesen S, Bohle RM, Damm-Welk C, Ludwig WD, Harbott J, Borkhardt A (2001) The human formin-binding protein 17 (FBP17) interacts with sorting nexin, SNX2, and is an MLL-fusion partner in acute myelogeneous leukemia. Proc Natl Acad Sci U S A 98:8756–8761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Fuchs U, Rehkamp GF, Slany R, Follo M, Borkhardt A (2003) The formin-binding protein 17, FBP17, binds via a TNKS binding motif to tankyrase, a protein involved in telomere maintenance. FEBS Lett 554:10–16

    Article  CAS  PubMed  Google Scholar 

  52. Takano K, Toyooka K, Suetsugu S (2008) EFC/F-BAR proteins and the N-WASP-WIP complex induce membrane curvature-dependent actin polymerization. EMBO J 27:2817–2828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Deng Z, Lezina L, Chen CJ, Shtivelband S, So W, Lieberman PM (2002) Telomeric proteins regulate episomal maintenance of Epstein-Barr virus origin of plasmid replication. Mol Cell 9:493–503

    Article  CAS  PubMed  Google Scholar 

  54. Deng Z, Atanasiu C, Zhao K, Marmorstein R, Sbodio JI, Chi NW, Lieberman PM (2005) Inhibition of Epstein-Barr virus OriP function by tankyrase, a telomere-associated poly-ADP ribose polymerase that binds and modifies EBNA1. J Virol 79:4640–4650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Song X, Wang S, Li L (2014) New insights into the regulation of Axin function in canonical Wnt signaling pathway. Protein Cell 5:186–193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C, Finan PM, Tallarico JA, Bouwmeester T, Porter JA, Bauer A, Cong F (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461:614–620

    Article  CAS  PubMed  Google Scholar 

  57. Morrone S, Cheng Z, Moon RT, Cong F, Xu W (2012) Crystal structure of a Tankyrase-Axin complex and its implications for Axin turnover and Tankyrase substrate recruitment. Proc Natl Acad Sci U S A 109:1500–1505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Yuan F, Song L, Qian L, Hu JJ, Zhang Y (2010) Assembling an orchestra: fanconi anemia pathway of DNA repair. Front Biosci 15:1131–1149

    Article  CAS  Google Scholar 

  59. Lyakhovich A, Ramirez MJ, Castellanos A, Castella M, Simons AM, Parvin JD, Surralles J (2011) Fanconi anemia protein FANCD2 inhibits TRF1 polyADP-ribosylation through tankyrase1-dependent manner. Genome Integr 2:4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Callow MG, Tran H, Phu L, Lau T, Lee J, Sandoval WN, Liu PS, Bheddah S, Tao J, Lill JR, Hongo JA, Davis D, Kirkpatrick DS, Polakis P, Costa M (2011) Ubiquitin ligase RNF146 regulates tankyrase and Axin to promote Wnt signaling. PloS One 6:e22595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Zhang Y, Liu S, Mickanin C, Feng Y, Charlat O, Michaud GA, Schirle M, Shi X, Hild M, Bauer A, Myer VE, Finan PM, Porter JA, Huang SM, Cong F (2011) RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat Cell Biol 13:623–629

    Article  CAS  PubMed  Google Scholar 

  62. Kang HC, Lee YI, Shin JH, Andrabi SA, Chi Z, Gagne JP, Lee Y, Ko HS, Lee BD, Poirier GG, Dawson VL, Dawson TM (2011) Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. Proc Natl Acad Sci U S A 108:14103–14108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Barr FA, Short B (2003) Golgins in the structure and dynamics of the Golgi apparatus. Curr Opin Cell Biol 15:405–413

    Article  CAS  PubMed  Google Scholar 

  64. Daguenet E, Baguet A, Degot S, Schmidt U, Alpy F, Wendling C, Spiegelhalter C, Kessler P, Rio MC, Le Hir H, Bertrand E, Tomasetto C (2012) Perispeckles are major assembly sites for the exon junction core complex. Mol Biol Cell 23:1765–1782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Boutell C, Everett RD (2013) Regulation of alphaherpesvirus infections by the ICP0 family of proteins. J Gen Virol 94:465–481

    Article  CAS  PubMed  Google Scholar 

  66. Li Z, Yamauchi Y, Kamakura M, Murayama T, Goshima F, Kimura H, Nishiyama Y (2012) Herpes simplex virus requires poly(ADP-ribose) polymerase activity for efficient replication and induces extracellular signal-related kinase-dependent phosphorylation and ICP0-dependent nuclear localization of tankyrase 1. J Virol 86:492–503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Reichenberger EJ, Levine MA, Olsen BR, Papadaki ME, Lietman SA (2012) The role of SH3BP2 in the pathophysiology of cherubism. Orphanet J Rare Dis 7 (Suppl 1):S5

    Article  PubMed Central  PubMed  Google Scholar 

  68. Levaot N, Voytyuk O, Dimitriou I, Sircoulomb F, Chandrakumar A, Deckert M, Krzyzanowski PM, Scotter A, Gu S, Janmohamed S, Cong F, Simoncic PD, Ueki Y, La Rose J, Rottapel R (2011) Loss of Tankyrase-mediated destruction of 3BP2 is the underlying pathogenic mechanism of cherubism. Cell 147:1324–1339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Becker DJ, Lowe JB (2003) Fucose: biosynthesis and biological function in mammals. Glycobiology 13:41R–53R

    Article  CAS  PubMed  Google Scholar 

  70. Bettencourt-Dias M, Hildebrandt F, Pellman D, Woods G, Godinho SA (2011) Centrosomes and cilia in human disease. Trends Genet 27:307–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Tang CJ, Fu RH, Wu KS, Hsu WB, Tang TK (2009) CPAP is a cell-cycle regulated protein that controls centriole length. Nat Cell Biol 11:825–831

    Article  CAS  PubMed  Google Scholar 

  72. Kim MK, Dudognon C, Smith S (2012) Tankyrase 1 regulates centrosome function by controlling CPAP stability. EMBO Rep 13:724–732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Mauritzson N, Albin M, Rylander L, Billstrom R, Ahlgren T, Mikoczy Z, Bjork J, Stromberg U, Nilsson PG, Mitelman F, Hagmar L, Johansson B (2002) Pooled analysis of clinical and cytogenetic features in treatment-related and de novo adult acute myeloid leukemia and myelodysplastic syndromes based on a consecutive series of 761 patients analyzed 1976–1993 and on 5098 unselected cases reported in the literature 1974–2001. Leukemia 16:2366–2378

    Article  CAS  PubMed  Google Scholar 

  74. Ozaki Y, Matsui H, Asou H, Nagamachi A, Aki D, Honda H, Yasunaga S, Takihara Y, Yamamoto T, Izumi S, Ohsugi M, Inaba T (2012) Poly-ADP ribosylation of Miki by tankyrase-1 promotes centrosome maturation. Mol Cell 47:694–706

    Article  CAS  PubMed  Google Scholar 

  75. Cho-Park PF, Steller H (2013) Proteasome regulation by ADP-ribosylation. Cell 153:614–627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Fancy SP, Harrington EP, Yuen TJ, Silbereis JC, Zhao C, Baranzini SE, Bruce CC, Otero JJ, Huang EJ, Nusse R, Franklin RJ, Rowitch DH (2011) Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat Neurosci 14:1009–1016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Goldberg AL (2012) Development of proteasome inhibitors as research tools and cancer drugs. J Cell Biol 199:583–588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Lehtio L, Chi NW, Krauss S (2013) Tankyrases as drug targets. FEBS J 280:3576–3593

    Article  PubMed  Google Scholar 

  79. Her YR, Chung IK (2009) Ubiquitin Ligase RLIM Modulates Telomere Length Homeostasis through a Proteolysis of TRF1. J Biol Chem 284:8557–8566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Lee TH, Perrem K, Harper JW, Lu KP, Zhou XZ (2006) The F-box protein FBX4 targets PIN2/TRF1 for ubiquitin-mediated degradation and regulates telomere maintenance. J Biol Chem 281:759–768

    Article  CAS  PubMed  Google Scholar 

  81. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957–963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Amit Bhardwaj and Ekta Tripathi for comments on the manuscript and Sam Meier and Abe Ratnofsky for figure preparation. The work on tankyrases in the Smith lab is supported by NIH NCI grant CA095099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Smith, S. (2015). TIPs: Tankyrase Interacting Proteins. In: Curtin, N., Sharma, R. (eds) PARP Inhibitors for Cancer Therapy. Cancer Drug Discovery and Development, vol 83. Humana Press, Cham. https://doi.org/10.1007/978-3-319-14151-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14151-0_4

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-14150-3

  • Online ISBN: 978-3-319-14151-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics