Skip to main content

Clinical Trials Investigating PARP Inhibitors as Single Agents

  • Chapter
  • First Online:
PARP Inhibitors for Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D,volume 83))

Abstract

Several drugs targeting poly (ADP-ribose) polymerase (PARP) enzymes are in clinical development. One of the most novel potential uses of PARP inhibitors is as single agents exploiting the concept of “synthetic lethality” in settings where the DNA homologous recombination repair (HRR) pathway is compromised—e.g. with PARP inhibitor monotherapy for tumours with germline mutations in BRCA1 and BRCA2. Accumulating evidence suggests that PARP inhibitors may have a wider application in the treatment of sporadic cancers with defective HRR pathways. Several phase I and II trials have reported PARP inhibitors to be efficacious with favorable side effect profiles. While there have indeed been some setbacks in the development of this class of drugs, major concerns with regards to PARP inhibitor specificity, patient selection or toxicity have or are being addressed. At least five agents have now entered late stage phase III drug development in an effort to gain regulatory approval and advance the field of PARP inhibitor therapy. The aim of this chapter is to provide an update on the current status of single agent PARP inhibitor clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Plummer R, Jones C, Middleton M et al (2008) Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res 14:7917–7923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Madhusudan S, Middleton MR (2005) The emerging role of DNA repair proteins as predictive, prognostic and therapeutic targets in cancer. Cancer Treat Rev 31:603–617

    Article  CAS  PubMed  Google Scholar 

  3. Bryant HE, Schultz N, Thomas HD et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–917

    Article  CAS  PubMed  Google Scholar 

  4. Farmer H, McCabe N, Lord CJ et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    Article  CAS  PubMed  Google Scholar 

  5. Turner N, Tutt A, Ashworth A (2004) Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4:814–819

    Article  CAS  PubMed  Google Scholar 

  6. Press JZ, De Luca A, Boyd N et al (2008) Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities. BMC Cancer 8:17

    Article  PubMed Central  PubMed  Google Scholar 

  7. Turner NC, Reis-Filho JS, Russell AM et al (2007) BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 26:2126–2132

    Article  CAS  PubMed  Google Scholar 

  8. Mendes-Pereira AM, Martin SA, Brough R et al (2009) Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med 1:315–322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. McCabe N, Turner NC, Lord CJ et al (2006) Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 66:8109–8115

    Article  CAS  PubMed  Google Scholar 

  10. Fong PC, Boss DS, Yap TA et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361:123–134

    Article  CAS  PubMed  Google Scholar 

  11. Fong PC, Yap TA, Boss DS et al (2010) Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol 28:2512–2519

    Article  CAS  PubMed  Google Scholar 

  12. Tutt A, Robson M, Garber JE et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376:235–244

    Article  CAS  PubMed  Google Scholar 

  13. Audeh MW, Carmichael J, Penson RT et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376:245–251

    Article  CAS  PubMed  Google Scholar 

  14. Sandhu SKWR, Wilding G, McFadden M, Sun L, Toniatti C, Stroh M, Carpenter CL, de Bono JS, Schelman WR (2010) First-in-human trial of a poly (ADP-ribose) polymerase (PARP) inhibitor MK-4827 in advanced cancer patients (pts) with antitumor activity in BRCA-deficient and sporadic ovarian cancers. J Clin Oncol 28(Suppl):3001

    Google Scholar 

  15. Mahany JJLN, Heath EI et al (20 May 2008) A phase IB study evaluating BSI-201 in combination with chemotherapy in subjects with advanced solid tumors. J Clin Oncol 26 (suppl; abstr 3579)

    Google Scholar 

  16. O’Shaughnessy JOC, Pippen JE et al (2009) Efficacy of BSI-201, a poly (ADP-ribose) polymerase-1 (PARP1) inhibitor, in combination with gemcitabine/carboplatin (G/C) in patients with metastatic triple-negative breast cancer (TNBC): results of a randomized phase II trial. J Clin Oncol. 7:18s (suppl; abstr 3)

    Google Scholar 

  17. O’Shaughnessy J, Osborne C, Pippen JE et al (2011a) Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med 364:205–214

    Article  PubMed  Google Scholar 

  18. Kopetz S (2008) First in human phase I study of BSI-201, a small molecule inhibitor of poly ADP- ribose polymerase (PARP) in subjects with advanced solid tumors. J Clin Oncol 26(Suppl):a3577

    Google Scholar 

  19. O’Shaughnessy JSL, Danso MA, Rugo HS, Miller K, Yardley DA et al (2011b) A randomized phase III study of iniparib (BSI-201) in combination with gemcitabine/carboplatin (G/C) in metastatic triple-negative breast cancer (TNBC). J Clin Oncol 29:(suppl; abstr 1007)

    Google Scholar 

  20. Sanofi (2013) Press release: Sanofi provides update on phase III studies of two investigational compounds. http://www.sanofi.co.uk/l/gb/en/layout.jsp?cnt=BDFF7A0E-6FC6-4DB4-B124-09A4D9D39400. Accessed Jan 2014

  21. Licht SCH, Li Z, Zhang J, Liu F, Brittain S, Junqing S, Zhang B, Hopke J, Newcombe R, Reiling S, Pollard J, Watters J, Hong C, Reddy V, Bergstrom DA (November 2011) Abstract A226: mechanism of action of iniparib: stimulation of reactive oxygen species (ROS) production in an iniparib-sensitive breast cancer cell line. Mol Cancer Ther 10(11):Supplement 1

    Google Scholar 

  22. Ji J, Lee MP, Kadota M et al (2011) Pharmacodynamic and pathway analysis of three presumed inhibitors of poly (ADP-ribose) polymerase: ABT-888, AZD2281, and BSI201. Annual Meeting of American Association for Cancer Research; Orlando. April 2–6; abstract 4527

    Google Scholar 

  23. Ossovskaya VLL, Broude E et al (2009) BSI-201 enhances the activity of multiple classes of cytotoxic agents and irradiation in triple negative breast cancer. Proc 100th Annu Meeting Am Assoc Cancer Res. a5552

    Google Scholar 

  24. Patel AG, De Lorenzo SB, Flatten KS et al (2012) Failure of iniparib to inhibit poly(ADP-Ribose) polymerase in vitro. Clin Cancer Res 18:1655–1662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Rice WG, Hillyer CD, Harten B et al (1992) Induction of endonuclease-mediated apoptosis in tumor cells by C-nitroso-substituted ligands of poly(ADP-ribose) polymerase. Proc Natl Acad Sci U S A 89:7703–7707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Mendeleyev J, Kirsten E, Hakam A et al (1995) Potential chemotherapeutic activity of 4-iodo-3-nitrobenzamide. Metabolic reduction to the 3-nitroso derivative and induction of cell death in tumor cells in culture. Biochem Pharmacol 50:705–714

    Article  CAS  PubMed  Google Scholar 

  27. Kirsten E, Kun E (2000) Cancer cell selectivity of 5-iodo-6-aminobenzopyrone (INH2BP) and methyl-3,5-diiodo-4(4′-methoxyphenoxy) benzoate (DIME). Int J Mol Med 5:279–281

    CAS  PubMed  Google Scholar 

  28. Murai J, Huang SY, Das BB et al (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72:5588–5599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Gelmon KA, Tischkowitz M, Mackay H et al (2011) Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol 12:852–861

    Article  CAS  PubMed  Google Scholar 

  30. Ledermann J, Harter P, Gourley C et al (2012) Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med 366:1382–1392

    Article  CAS  PubMed  Google Scholar 

  31. Kaye SB, Lubinski J, Matulonis U et al (2012) Phase II, open-label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly (ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer. J Clin Oncol 30:372–379

    Article  CAS  PubMed  Google Scholar 

  32. Gordon AN, Fleagle JT, Guthrie D et al (2001) Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol 19:3312–3322

    CAS  PubMed  Google Scholar 

  33. Safra T, Borgato L, Nicoletto MO et al (2011) BRCA mutation status and determinant of outcome in women with recurrent epithelial ovarian cancer treated with pegylated liposomal doxorubicin. Mol Cancer Ther 10:2000–2007

    Article  CAS  PubMed  Google Scholar 

  34. Adams SF, Marsh EB, Elmasri W et al (2011) A high response rate to liposomal doxorubicin is seen among women with BRCA mutations treated for recurrent epithelial ovarian cancer. Gynecol Oncol 123:486–491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Irshad S, Ellis P, Tutt A (2011) Molecular heterogeneity of triple-negative breast cancer and its clinical implications. Curr Opin Oncol 23:566–577

    Article  CAS  PubMed  Google Scholar 

  36. Gonzalez-Angulo AM, Timms KM, Liu S et al (2011) Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin Cancer Res 17:1082–1089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Wei M, Xu J, Dignam J et al (2008) Estrogen receptor alpha, BRCA1, and FANCF promoter methylation occur in distinct subsets of sporadic breast cancers. Breast Cancer Res Treat 111:113–120

    Article  CAS  PubMed  Google Scholar 

  38. Wei M, Grushko TA, Dignam J et al (2005) BRCA1 promoter methylation in sporadic breast cancer is associated with reduced BRCA1 copy number and chromosome 17 aneusomy. Cancer Res 65:10692–10699

    Article  CAS  PubMed  Google Scholar 

  39. Lehmann BD, Bauer JA, Chen X et al (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121:2750–2767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Watkins J, Irshad S, Grigoriadis A, Tutt A (2014) Genomic scars as biomarkers of homologous recombination deficiency and drug response in breast and ovarian cancers. Breast Cancer Res 2014;16(3):211

    Google Scholar 

  41. Murai J, Huang SY, Renaud A et al (2013) Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol Cancer Ther 2014 Feb;13(2):433–443

    Google Scholar 

  42. Shen Y, Rehman FL, Feng Y et al (2013) BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin Cancer Res 19:5003–5015

    Article  CAS  PubMed  Google Scholar 

  43. De Bono JSML, Gonzalez M, Curtin NJ, Wang E, Henshaw JW, Chadha M, Sachdev JC, Matei D, Jameson GS, Ong M, Basu B, Wainberg ZA, Byers LA, Chugh R, Dorr A, Kaye SB, Ramanathan RK (2013) First-in-human trial of novel oral PARP inhibitor BMN 673 in patients with solid tumors. J Clin Oncol 31:(suppl; abstr 2580)

    Google Scholar 

  44. Ledermann JGC, Friedlander M et al (2013) Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer (SOC) and a BRCA mutation (BRCAm). J Clin Oncol 31:(suppl; abstr 5505)

    Google Scholar 

  45. Oza AM, Cibula D, Oaknin A, Poole CJ, Mathijssen RHJ, Sonke GS (2012) Olaparib plus paclitaxel plus carboplatin (P/C) followed by olaparib maintenance treatment in patients (pts) with platinum-sensitive recurrent serous ovarian cancer (PSR SOC): a randomized, open-label phase II study. J Clin Oncol 30:s5001

    Google Scholar 

  46. Gupta ADE, Drew Y et al (2012) Phase I study to determine the bioavailability and tolerability of a tablet formulation of the PARP inhibitor olaparib in patients with advanced solid tumors: dose-escalation phase. J Clin Oncol 30:(suppl; abstr 3051)

    Google Scholar 

  47. Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138:2073–2087 (e2073)

    Google Scholar 

  48. Duval A, Hamelin R (2002) Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res 62:2447–2454

    CAS  PubMed  Google Scholar 

  49. Vilar E, Bartnik CM, Stenzel SL et al (2011) MRE11 deficiency increases sensitivity to poly(ADP-ribose) polymerase inhibition in microsatellite unstable colorectal cancers. Cancer Res 71:2632–2642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Aaltonen LA, Salovaara R, Kristo P et al (1998) Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N Engl J Med 338:1481–1487

    Article  CAS  PubMed  Google Scholar 

  51. Leichman LPC, Hochster SJ, Messersmith HS, Lenz WA, Boman H, Gold BM, O’Neil PJ, Berlin BH, Carmichael J (2010) A phase II trial to assess the single-agent efficacy and safety of the PARP inhibitor olaparib (O) in previously treated patients (pts) with metastatic, measurable colorectal cancer (mCRC) stratified by microsatellite status (MSs). ASCO 2010 General Poster Session, General Poster Session A. (abstr 118)

    Google Scholar 

  52. Drew YLJ, Jones A et al (2011) Phase II trial of the poly(ADP-ribose) polymerase (PARP) inhibitor AG-014699 in BRCA 1 and 2-mutated, advanced ovarian and/or locally advanced or metastatic breast cancer. J Clin Oncol 29:(suppl; abstr 3104)

    Google Scholar 

  53. Flynn M, Shapiro G, Kristeleit RS, LoRusso P, Infante JR, Patel MR, Tolaney SM, Hilton JF, Calvert AH, Giordano H, Isaacson JD, Borrow J, Allen AR, Jaw-Tsai SS, Burris HA (2013) A phase I dose-escalation and PK study of continuous oral rucaparib in patients with advanced solid tumors. European Cancer Congress, 2013 (abstr 881)

    Google Scholar 

  54. Kristeleit RBH, LoRusso P, Manish P, Heidi G, Jeff I, Jennifer B, Andrew A, Sarah J-T, Shapiro G (2013) Phase 1 study of continuous oral rucaparib: analysis of patient subgroup with ovarian/peritoneal cancer. J Clin Oncol 31:(suppl; abstr 2585)

    Google Scholar 

  55. Miller KDPS, Badve SS, Sledge GW, Schneider BP (2011) PARP inhibition after preoperative chemotherapy in patients with Triple-Negative Breast Cancer (TNBC) or known BRCA 1/2 mutations: Hoosier Oncology Group BRE09-146. Cancer Res 71(24):Supplement 3

    Google Scholar 

  56. Arun B, Bayraktar S, Liu DD et al (2011) Response to neoadjuvant systemic therapy for breast cancer in BRCA mutation carriers and noncarriers: a single-institution experience. J Clin Oncol 29:3739–3746

    Article  CAS  PubMed  Google Scholar 

  57. Roscilli GGG, Lamartin S et al (2010) PARP inhibitor MK-4827 is synthetic lethal for tumors with homologous recombination defects associated with ATM-deficiency, PTEN-deletion and microsatellite instability (MSI). Annual Meeting of the American Association for Cancer Research; April 17–21, 2010. 685

    Google Scholar 

  58. Sandhu SK, Schelman WR, Wilding G et al (2013) The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol 14:882–892

    Article  CAS  PubMed  Google Scholar 

  59. Brenner JC, Ateeq B, Li Y et al (2011) Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 19:664–678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Schiewer MJ, Goodwin JF, Han S et al (2012) Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov 2:1134–1149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Donawho CK, Luo Y, Luo Y et al (2007) ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res 13:2728–2737

    Article  CAS  PubMed  Google Scholar 

  62. Kummar S, Kinders R, Gutierrez ME et al (2009) Phase 0 clinical trial of the poly (ADP-ribose) polymerase inhibitor ABT-888 in patients with advanced malignancies. J Clin Oncol 27:2705–2711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Huggins-Puhalla SL, Beumer J, Appleman LJ, Tawbi HA, Stoller RG, Lin Y, Kiesel B, Tan AR, Gibbon D, Jiang Y, Garcia A, Chew HK, Morgan R, Shepherd SP, Giranda VL, Chen AP, Belani CP, Chu E (2012) A phase I study of chronically dosed, single-agent veliparib (ABT-888) in patients (pts) with either BRCA 1/2-mutated cancer (BRCA+), platinum-refractory ovarian cancer, or basal-like breast cancer (BRCA-wt). J Clin Oncol 30:(suppl; abstr 3054)

    Google Scholar 

  64. Ito S (2009) PARP inhibition induces genomic instability in normal human cells. Mol Cancer Ther November 2011; 10(11):Supplement 1 doi:10.1158/1535-7163.TARG-11-PR-10

    Google Scholar 

  65. Tong WM, Ohgaki H, Huang H et al (2003) Null mutation of DNA strand break-binding molecule poly(ADP-ribose) polymerase causes medulloblastomas in p53(-/-) mice. Am J Pathol 162:343–352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Nozaki T, Fujihara H, Watanabe M et al (2003) PARP-1 deficiency implicated in colon and liver tumorigenesis induced by azoxymethane. Cancer Sci 94:497–500

    Article  CAS  PubMed  Google Scholar 

  67. Lee LJ, Alexander B, Schnitt SJ et al (2011) Clinical outcome of triple negative breast cancer in BRCA1 mutation carriers and noncarriers. Cancer 117:3093–3100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Daniel RA, Rozanska AL, Mulligan EA et al (2010) Central nervous system penetration and enhancement of temozolomide activity in childhood medulloblastoma models by poly(ADP-ribose) polymerase inhibitor AG-014699. Br J Cancer 103:1588–1596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Tutt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Irshad, S., Tutt, A. (2015). Clinical Trials Investigating PARP Inhibitors as Single Agents. In: Curtin, N., Sharma, R. (eds) PARP Inhibitors for Cancer Therapy. Cancer Drug Discovery and Development, vol 83. Humana Press, Cham. https://doi.org/10.1007/978-3-319-14151-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14151-0_21

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-14150-3

  • Online ISBN: 978-3-319-14151-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics