Skip to main content

Synthetic Sickness with Molecularly Targeted Agents Against the EGFR Pathway

  • Chapter
  • First Online:
  • 1664 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D,volume 83))

Abstract

The discovery of novel synthetic sick and synthetic lethal interactions in tumors is paramount in the era of personalized medicine. Through these mechanisms, tumor cells may be preferentially killed while sparing healthy bystander tissue, thereby minimizing side effects. In this chapter, we will discuss in detail the nuances of synthetic sickness. Additionally, we will focus on one such potential induced synthetic sickness strategy involving the combined inhibition of the EGFR and PARP pathways. This concept revolves around the recent appreciation of several proteins within the EGFR pathway and their roles in DNA damage repair. We will discuss the mechanisms by which inhibition of the EGFR pathway induces a DNA repair deficiency, which is subsequently exploited by PARP inhibition. Clinical testing of these strategies is currently underway, and if successful, may impact the therapy of multiple tumor types.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hartman JL 4th, Garvik B, Hartwell L (2001) Principles for the buffering of genetic variation. Science (New York, NY) 291(5506):1001–1004

    CAS  PubMed  Google Scholar 

  2. Guarente L (1993) Synthetic enhancement in gene interaction: a genetic tool come of age. Trends Genet 9(10):362–366

    CAS  PubMed  Google Scholar 

  3. Kamb A (2003) Mutation load, functional overlap, and synthetic lethality in the evolution and treatment of cancer. J Theor Biol 223(2):205–213

    CAS  PubMed  Google Scholar 

  4. Friend SH, Oliff A (1998) Emerging uses for genomic information in drug discovery. N Engl J Med 338(2):125–126. doi:10.1056/nejm199801083380211

    CAS  PubMed  Google Scholar 

  5. Dobzhansky T (1946) Genetics of natural populations. Xiii. Recombination and variability in populations of Drosophila Pseudoobscura. Genetics 31(3):269–290

    PubMed Central  Google Scholar 

  6. Lucchesi JC (1968) Synthetic lethality and semi-lethality among functionally related mutants of Drosophila melanfgaster. Genetics 59(1):37–44

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Kaelin WG Jr (2005) The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 5(9):689–698. doi:10.1038/nrc1691

    CAS  PubMed  Google Scholar 

  8. Simons AH, Dafni N, Dotan I, Oron Y, Canaani D (2001) Genetic synthetic lethality screen at the single gene level in cultured human cells. Nucleic Acids Res 29(20):E100

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Brough R, Frankum JR, Costa-Cabral S, Lord CJ, Ashworth A (2011) Searching for synthetic lethality in cancer. Curr Opin Genet Dev 21(1):34–41. doi:10.1016/j.gde.2010.10.009

    CAS  PubMed  Google Scholar 

  10. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O’Connor MJ, Ashworth A, Carmichael J, Kaye SB, Schellens JHM, de Bono JS (2009) Inhibition of Poly(ADP-Ribose) Polymerase in Tumors from BRCA Mutation Carriers. N Engl J Med 361(2):123–134. doi:10.1056/NEJMoa0900212

    CAS  PubMed  Google Scholar 

  11. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035):913–917. doi:10.1038/nature03443

    CAS  PubMed  Google Scholar 

  12. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921

    CAS  PubMed  Google Scholar 

  13. Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science (New York, NY) 294(5550):2364–2368. doi:10.1126/science.1065810

    CAS  PubMed  Google Scholar 

  14. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10(4):293–301. doi:10.1038/nrc2812

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Hynes NE, MacDonald G (2009) ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 21(2):177–184

    CAS  PubMed  Google Scholar 

  16. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366(1):2–16

    CAS  PubMed  Google Scholar 

  17. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Reviews Cancer 5(5):341–354

    CAS  PubMed  Google Scholar 

  18. Carlin CR, Knowles BB (1982) Identity of human epidermal growth factor (EGF) receptor with glycoprotein SA-7: evidence for differential phosphorylation of the two components of the EGF receptor from A431 cells. Proc Natl Acad Sci U S A 79(16):5026–5030

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Gullick WJ, Downward J, Parker PJ, Whittle N, Kris R, Schlessinger J, Ullrich A, Waterfield MD (1985) The structure and function of the epidermal growth factor receptor studied by using antisynthetic peptide antibodies. Proc R Soc Lond Series B (Containing papers of a Biological character Royal Society Great Britain) 226(1242):127–134

    Google Scholar 

  20. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125(6):1137–1149. doi:10.1016/j.cell.2006.05.013

    CAS  PubMed  Google Scholar 

  21. Yu H, Jove R (2004) The STATs of cancer—new molecular targets come of age. Nat Rev Cancer 4(2):97–105. doi:10.1038/nrc1275

    CAS  PubMed  Google Scholar 

  22. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2(2):127–137. doi:10.1038/35052073

    CAS  PubMed  Google Scholar 

  23. Olayioye MA, Neve RM, Lane HA, Hynes NE (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19(13):3159–3167. doi:10.1093/emboj/19.13.3159

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Schlessinger J (2004) Common and distinct elements in cellular signaling via EGF and FGF receptors. Science (New York, NY) 306(5701):1506–1507. doi:10.1126/science.1105396

    CAS  PubMed  Google Scholar 

  25. Sordella R, Bell DW, Haber DA, Settleman J (2004) Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science (New York, NY) 305(5687):1163–1167. doi:10.1126/science.1101637

    CAS  PubMed  Google Scholar 

  26. Ishizawar R, Parsons SJ (2004) c-Src and cooperating partners in human cancer. Cancer Cell 6(3):209–214. doi:10.1016/j.ccr.2004.09.001

    CAS  PubMed  Google Scholar 

  27. Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4(5):335–348. doi:10.1038/nrc1362

    CAS  PubMed  Google Scholar 

  28. Wiley HS, Burke PM (2001) Regulation of receptor tyrosine kinase signaling by endocytic trafficking. Traffic (Copenhagen, Denmark) 2(1):12–18

    CAS  Google Scholar 

  29. Sorkin A, Goh LK (2008) Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 314(17):3093–3106. doi:10.1016/j.yexcr.2008.08.013

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Seet BT, Dikic I, Zhou M-M, Pawson T (2006) Reading protein modifications with interaction domains. Nat Rev Mol Cell Biol 7(7):473–483

    CAS  PubMed  Google Scholar 

  31. Lo H-W, Ali-Seyed M, Wu Y, Bartholomeusz G, Hsu S-C, Hung M-C (2006) Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin β1 and CRM1. J Cell Biochem 98(6):1570–1583. doi:10.1002/jcb.20876

    CAS  PubMed  Google Scholar 

  32. Demory ML, Boerner JL, Davidson R, Faust W, Miyake T, Lee I, Huttemann M, Douglas R, Haddad G, Parsons SJ (2009) Epidermal growth factor receptor translocation to the mitochondria: regulation and effect. J Biol Chem 284(52):36592–36604. doi:10.1074/jbc.M109.000760

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Lo HW, Hsu SC, Ali-Seyed M, Gunduz M, Xia W, Wei Y, Bartholomeusz G, Shih JY, Hung MC (2005) Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell 7(6):575–589. doi:10.1016/j.ccr.2005.05.007

    CAS  PubMed  Google Scholar 

  34. Tischer C, Bastiaens PI (2003) Lateral phosphorylation propagation: an aspect of feedback signalling? Nat Rev Mol Cell Biol 4(12):971–974. doi:10.1038/nrm1258

    CAS  PubMed  Google Scholar 

  35. Das AK, Sato M, Story MD, Peyton M, Graves R, Redpath S, Girard L, Gazdar AF, Shay JW, Minna JD, Nirodi CS (2006) Non-small-cell lung cancers with kinase domain mutations in the epidermal growth factor receptor are sensitive to ionizing radiation. Cancer Res 66(19):9601–9608. doi:10.1158/0008-5472.can-06-2627

    CAS  PubMed  Google Scholar 

  36. Song H, Li CW, Labaff AM, Lim SO, Li LY, Kan SF, Chen Y, Zhang K, Lang J, Xie X, Wang Y, Huo LF, Hsu SC, Chen X, Zhao Y, Hung MC (2011) Acetylation of EGF receptor contributes to tumor cell resistance to histone deacetylase inhibitors. Biochem Biophys Res Commun 404(1):68–73. doi:10.1016/j.bbrc.2010.11.064

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Goh LK, Huang F, Kim W, Gygi S, Sorkin A (2010) Multiple mechanisms collectively regulate clathrin-mediated endocytosis of the epidermal growth factor receptor. J Cell Biol 189(5):871–883. doi:10.1083/jcb.201001008

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Vieira AV, Lamaze C, Schmid SL (1996) Control of EGF receptor signaling by clathrin-mediated endocytosis. Science (New York, NY) 274(5295):2086–2089

    CAS  PubMed  Google Scholar 

  39. Cohen S, Fava RA (1985) Internalization of functional epidermal growth factor:receptor/kinase complexes in A-431 cells. J Biol Chem 260(22):12351–12358

    CAS  PubMed  Google Scholar 

  40. Lai WH, Cameron PH, Doherty JJ 2nd, Posner BI, Bergeron JJ (1989) Ligand-mediated autophosphorylation activity of the epidermal growth factor receptor during internalization. J Cell Biol 109(6 Pt 1):2751–2760

    CAS  PubMed  Google Scholar 

  41. Clague MJ, Urbe S (2001) The interface of receptor trafficking and signalling. J Cell Sci 114(Pt 17):3075–3081

    CAS  PubMed  Google Scholar 

  42. Di Guglielmo GM, Baass PC, Ou WJ, Posner BI, Bergeron JJ (1994) Compartmentalization of SHC, GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. EMBO J 13(18):4269–4277

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Wang Z, Tung PS, Moran MF (1996) Association of p120 ras GAP with endocytic components and colocalization with epidermal growth factor (EGF) receptor in response to EGF stimulation. Cell Growth Differ (the molecular biology journal of the American Association for Cancer Research) 7(1):123–133

    CAS  PubMed  Google Scholar 

  44. Burke P, Schooler K, Wiley HS (2001) Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Mol Biol Cell 12(6):1897–1910

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Wang Y, Pennock S, Chen X, Wang Z (2002) Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol Cell Biol 22(20):7279–7290

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Boerner JL, Demory ML, Silva C, Parsons SJ (2004) Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II. Mol Cell Biol 24(16):7059–7071. doi:10.1128/mcb.24.16.7059-7071.2004

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Yue X, Song W, Zhang W, Chen L, Xi Z, Xin Z, Jiang X (2008) Mitochondrially localized EGFR is subjected to autophagic regulation and implicated in cell survival. Autophagy 4(5):641–649

    CAS  PubMed  Google Scholar 

  48. Gschwind A, Fischer OM, Ullrich A (2004) The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 4(5):361–370. doi:10.1038/nrc1360

    CAS  PubMed  Google Scholar 

  49. Salomon DS, Brandt R, Ciardiello F, Normanno N (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19(3):183–232. doi:http://dx.doi.org/10.1016/1040-8428(94)00144-I

    CAS  PubMed  Google Scholar 

  50. Sheridan MT, O’Dwyer T, Seymour CB, Mothersill CE (1997) Potential indicators of radiosensitivity in squamous cell carcinoma of the head and neck. Radiat Oncol Investig 5(4):180–186. doi:10.1002/(sici)1520-6823(1997)5:4<180::aid-roi3>3.0.co;2-u

    CAS  PubMed  Google Scholar 

  51. Akimoto T, Hunter NR, Buchmiller L, Mason K, Ang KK, Milas L (1999) Inverse relationship between epidermal growth factor receptor expression and radiocurability of murine carcinomas. Clin Cancer Res (an official journal of the American association for cancer research) 5(10):2884–2890

    CAS  PubMed  Google Scholar 

  52. Milas L, Fan Z, Andratschke NH, Ang KK (2004) Epidermal growth factor receptor and tumor response to radiation: in vivo preclinical studies. Int J Radiat Oncol Biol Phys 58(3):966–971. doi:10.1016/j.ijrobp.2003.08.035

    CAS  PubMed  Google Scholar 

  53. Park HS, Jang MH, Kim EJ, Kim HJ, Lee HJ, Kim YJ, Kim JH, Kang E, Kim SW, Kim IA, Park SY (2014) High EGFR gene copy number predicts poor outcome in triple-negative breast cancer. Mod Pathol. doi:10.1038/modpathol.2013.251

    Google Scholar 

  54. Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B (1987) Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci U S A 84(19):6899–6903

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Etienne MC, Formento JL, Lebrun-Frenay C, Gioanni J, Chatel M, Paquis P, Bernard C, Courdi A, Bensadoun RJ, Pignol JP, Francoual M, Grellier P, Frenay M, Milano G (1998) Epidermal growth factor receptor and labeling index are independent prognostic factors in glial tumor outcome. Clin Cancer Res (an official journal of the American association for cancer research) 4(10):2383–2390

    CAS  PubMed  Google Scholar 

  56. Thien CB, Langdon WY (1997) Tyrosine kinase activity of the EGF receptor is enhanced by the expression of oncogenic 70Z-Cbl. Oncogene 15(24):2909–2919. doi:10.1038/sj.onc.1201468

    CAS  PubMed  Google Scholar 

  57. Peschard P, Park M (2003) Escape from Cbl-mediated downregulation: a recurrent theme for oncogenic deregulation of receptor tyrosine kinases. Cancer Cell 3(6):519–523

    CAS  PubMed  Google Scholar 

  58. Humphrey PA, Wong AJ, Vogelstein B, Zalutsky MR, Fuller GN, Archer GE, Friedman HS, Kwatra MM, Bigner SH, Bigner DD (1990) Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma. Proc Natl Acad Sci U S A 87(11):4207–4211

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352(8):786–792. doi:10.1056/NEJMoa044238

    CAS  PubMed  Google Scholar 

  60. Shih JY, Gow CH, Yang PC (2005) EGFR mutation conferring primary resistance to gefitinib in non-small-cell lung cancer. N Engl J Med 353(2):207–208. doi:10.1056/nejm200507143530217

    CAS  PubMed  Google Scholar 

  61. Ekstrand AJ, Sugawa N, James CD, Collins VP (1992) Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc Natl Acad Sci U S A 89(10):4309–4313

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Moscatello DK, Holgado-Madruga M, Godwin AK, Ramirez G, Gunn G, Zoltick PW, Biegel JA, Hayes RL, Wong AJ (1995) Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res 55(23):5536–5539

    CAS  PubMed  Google Scholar 

  63. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139. doi:10.1056/NEJMoa040938

    CAS  PubMed  Google Scholar 

  64. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science (New York, NY) 304(5676):1497–1500. doi:10.1126/science.1099314

    CAS  PubMed  Google Scholar 

  65. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L, Mardis E, Kupfer D, Wilson R, Kris M, Varmus H (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 101(36):13306–13311. doi:10.1073/pnas.0405220101

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Lo HW, Hung MC (2006) Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br J Cancer 94(2):184–188. doi:10.1038/sj.bjc.6602941

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Li C, Iida M, Dunn EF, Ghia AJ, Wheeler DL (2009) Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene 28(43):3801–3813. doi:10.1038/onc.2009.234

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Brand TM, Iida M, Li C, Wheeler DL (2011) The nuclear epidermal growth factor receptor signaling network and its role in cancer. Discov Med 12(66):419–432

    PubMed Central  PubMed  Google Scholar 

  69. Marti U, Ruchti C, Kampf J, Thomas GA, Williams ED, Peter HJ, Gerber H, Burgi U (2001) Nuclear localization of epidermal growth factor and epidermal growth factor receptors in human thyroid tissues. Thyroid (official journal of the American thyroid association) 11(2):137–145. doi:10.1089/105072501300042785

    CAS  PubMed  Google Scholar 

  70. Lin S-Y, Makino K, Xia W, Matin A, Wen Y, Kwong KY, Bourguignon L, Hung M-C (2001) Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol 3(9):802–808

    CAS  PubMed  Google Scholar 

  71. Kamio T, Shigematsu K, Sou H, Kawai K, Tsuchiyama H (1990) Immunohistochemical expression of epidermal growth factor receptors in human adrenocortical carcinoma. Hum Pathol 21(3):277–282

    CAS  PubMed  Google Scholar 

  72. Lipponen P, Eskelinen M (1994) Expression of epidermal growth factor receptor in bladder cancer as related to established prognostic factors, oncoprotein (c-erbB-2, p53) expression and long-term prognosis. Br J Cancer 69(6):1120–1125

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Lo HW, Xia W, Wei Y, Ali-Seyed M, Huang SF, Hung MC (2005) Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Res 65(1):338–348

    CAS  PubMed  Google Scholar 

  74. Xia W, Wei Y, Du Y, Liu J, Chang B, Yu YL, Huo LF, Miller S, Hung MC (2009) Nuclear expression of epidermal growth factor receptor is a novel prognostic value in patients with ovarian cancer. Mol Carcinog 48(7):610–617. doi:10.1002/mc.20504

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Psyrri A, Yu Z, Weinberger PM, Sasaki C, Haffty B, Camp R, Rimm D, Burtness BA (2005) Quantitative determination of nuclear and cytoplasmic epidermal growth factor receptor expression in oropharyngeal squamous cell cancer by using automated quantitative analysis. Clin Cancer Res (an official journal of the American association for cancer research) 11(16):5856–5862. doi:10.1158/1078-0432.ccr-05-0420

    CAS  PubMed  Google Scholar 

  76. Li CF, Fang FM, Wang JM, Tzeng CC, Tai HC, Wei YC, Li SH, Lee YT, Wang YH, Yu SC, Shiue YL, Chu PY, Wang WL, Chen LT, Huang HY (2012) EGFR nuclear import in gallbladder carcinoma: nuclear phosphorylated EGFR upregulates iNOS expression and confers independent prognostic impact. Ann Surg Oncol 19(2):443–454. doi:10.1245/s10434-011-1942-6

    PubMed  Google Scholar 

  77. Tervahauta A, Syrjanen S, Syrjanen K (1994) Epidermal growth factor receptor, c-erbB-2 proto-oncogene and estrogen receptor expression in human papillomavirus lesions of the uterine cervix. Int J Gynecol Pathol (official journal of the International Society of Gynecological Pathologists) 13(3):234–240

    CAS  PubMed  Google Scholar 

  78. Marti U, Burwen SJ, Wells A, Barker ME, Huling S, Feren AM, Jones AL (1991) Localization of epidermal growth factor receptor in hepatocyte nuclei. Hepatology (Baltimore, Md) 13(1):15–20

    CAS  PubMed  Google Scholar 

  79. Marti U, Hug M (1995) Acinar and cellular distribution and mRNA expression of the epidermal growth factor receptor are changed during liver regeneration. J Hepatol 23(3):318–327

    CAS  PubMed  Google Scholar 

  80. Schausberger E, Eferl R, Parzefall W, Chabicovsky M, Breit P, Wagner EF, Schulte-Hermann R, Grasl-Kraupp B (2003) Induction of DNA synthesis in primary mouse hepatocytes is associated with nuclear pro-transforming growth factor alpha and erbb-1 and is independent of c-jun. Carcinogenesis 24(5):835–841

    CAS  PubMed  Google Scholar 

  81. Grasl-Kraupp B, Schausberger E, Hufnagl K, Gerner C, Low-Baselli A, Rossmanith W, Parzefall W, Schulte-Hermann R (2002) A novel mechanism for mitogenic signaling via pro-transforming growth factor alpha within hepatocyte nuclei. Hepatology (Baltimore, Md) 35(6):1372–1380. doi:10.1053/jhep.2002.33203

    CAS  PubMed  Google Scholar 

  82. Cao H, Lei ZM, Bian L, Rao CV (1995) Functional nuclear epidermal growth factor receptors in human choriocarcinoma JEG-3 cells and normal human placenta. Endocrinology 136(7):3163–3172. doi:10.1210/endo.136.7.7540549

    CAS  PubMed  Google Scholar 

  83. Ni CY, Murphy MP, Golde TE, Carpenter G (2001) gamma -Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science (New York, NY) 294(5549):2179–2181. doi:10.1126/science.1065412

    CAS  PubMed  Google Scholar 

  84. Wang SC, Lien HC, Xia W, Chen IF, Lo HW, Wang Z, Ali-Seyed M, Lee DF, Bartholomeusz G, Ou-Yang F, Giri DK, Hung MC (2004) Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell 6(3):251–261. doi:10.1016/j.ccr.2004.07.012

    CAS  PubMed  Google Scholar 

  85. Offterdinger M, Schofer C, Weipoltshammer K, Grunt TW (2002) c-erbB-3: a nuclear protein in mammary epithelial cells. J Cell Biol 157(6):929–939. doi:10.1083/jcb.200109033

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Xie Y, Hung MC (1994) Nuclear localization of p185neu tyrosine kinase and its association with transcriptional transactivation. Biochem Biophys Res Commun 203(3):1589–1598

    CAS  PubMed  Google Scholar 

  87. Marti U, Wells A (2000) The nuclear accumulation of a variant epidermal growth factor receptor (EGFR) lacking the transmembrane domain requires coexpression of a full-length EGFR. Mol Cell Biol Res Commun 3(1):8–14. doi:10.1006/mcbr.2000.0177

    CAS  PubMed  Google Scholar 

  88. Klein C, Gensburger C, Freyermuth S, Nair BC, Labourdette G, Malviya AN (2004) A 120 kDa nuclear phospholipase Cgamma1 protein fragment is stimulated in vivo by EGF signal phosphorylating nuclear membrane EGFR. Biochemistry 43(50):15873–15883. doi:10.1021/bi048604t

    CAS  PubMed  Google Scholar 

  89. De Angelis Campos AC, Rodrigues MA, de Andrade C, de Goes AM, Nathanson MH, Gomes DA (2011) Epidermal growth factor receptors destined for the nucleus are internalized via a clathrin-dependent pathway. Biochem Biophys Res Commun 412(2):341–346. doi:10.1016/j.bbrc.2011.07.100

    PubMed Central  PubMed  Google Scholar 

  90. Kim J, Jahng WJ, Di Vizio D, Lee JS, Jhaveri R, Rubin MA, Shisheva A, Freeman MR (2007) The phosphoinositide kinase PIKfyve mediates epidermal growth factor receptor trafficking to the nucleus. Cancer Res 67(19):9229–9237. doi:10.1158/0008-5472.can-07-1333

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Ikonomov OC, Sbrissa D, Shisheva A (2006) Localized PtdIns 3,5-P2 synthesis to regulate early endosome dynamics and fusion. Am J Physiol Cell Physiol 291(2):C393–404. doi:10.1152/ajpcell.00019.2006

    CAS  PubMed  Google Scholar 

  92. Sbrissa D, Ikonomov OC, Fu Z, Ijuin T, Gruenberg J, Takenawa T, Shisheva A (2007) Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. Novel Sac phosphatase joins the ArPIKfyve-PIKfyve complex. J Biol Chem 282(33):23878–23891. doi:10.1074/jbc.M611678200

    CAS  PubMed  Google Scholar 

  93. Rutherford AC, Traer C, Wassmer T, Pattni K, Bujny MV, Carlton JG, Stenmark H, Cullen PJ (2006) The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport. J Cell Sci 119(Pt 19):3944–3957. doi:10.1242/jcs.03153

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Wang YN, Wang H, Yamaguchi H, Lee HJ, Lee HH, Hung MC (2010) COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport. Biochem Biophys Res Commun 399(4):498–504. doi:10.1016/j.bbrc.2010.07.096

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Nigg EA (1997) Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386(6627):779–787. doi:10.1038/386779a0

    CAS  PubMed  Google Scholar 

  96. Hsu SC, Hung MC (2007) Characterization of a novel tripartite nuclear localization sequence in the EGFR family. J Biol Chem 282(14):10432–10440. doi:10.1074/jbc.M610014200

    CAS  PubMed  Google Scholar 

  97. Wang YN, Yamaguchi H, Huo L, Du Y, Lee HJ, Lee HH, Wang H, Hsu JM, Hung MC (2010) The translocon Sec61beta localized in the inner nuclear membrane transports membrane-embedded EGF receptor to the nucleus. J Biol Chem 285(49):38720–38729. doi:10.1074/jbc.M110.158659

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Holt SJ, Alexander P, Inman CB, Davies DE (1994) Epidermal growth factor induced tyrosine phosphorylation of nuclear proteins associated with translocation of epidermal growth factor receptor into the nucleus. Biochem Pharmacol 47(1):117–126

    CAS  PubMed  Google Scholar 

  99. Dittmann K, Mayer C, Fehrenbacher B, Schaller M, Raju U, Milas L, Chen DJ, Kehlbach R, Rodemann HP (2005) Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J Biol Chem 280(35):31182–31189. doi:10.1074/jbc.M506591200

    CAS  PubMed  Google Scholar 

  100. Dittmann K, Mayer C, Fehrenbacher B, Schaller M, Kehlbach R, Rodemann HP (2010) Nuclear EGFR shuttling induced by ionizing radiation is regulated by phosphorylation at residue Thr654. FEBS Lett 584(18):3878–3884. doi:10.1016/j.febslet.2010.08.005

    CAS  PubMed  Google Scholar 

  101. Raper SE, Burwen SJ, Barker ME, Jones AL (1987) Translocation of epidermal growth factor to the hepatocyte nucleus during rat liver regeneration. Gastroenterology 92(5 Pt 1):1243–1250

    CAS  PubMed  Google Scholar 

  102. Cordero JB, Cozzolino M, Lu Y, Vidal M, Slatopolsky E, Stahl PD, Barbieri MA, Dusso A (2002) 1,25-Dihydroxyvitamin D down-regulates cell membrane growth- and nuclear growth-promoting signals by the epidermal growth factor receptor. J Biol Chem 277(41):38965–38971. doi:10.1074/jbc.M203736200

    CAS  PubMed  Google Scholar 

  103. Hanada N, Lo HW, Day CP, Pan Y, Nakajima Y, Hung MC (2006) Co-regulation of B-Myb expression by E2F1 and EGF receptor. Mol Carcinog 45(1):10–17. doi:10.1002/mc.20147

    CAS  PubMed  Google Scholar 

  104. Hung LY, Tseng JT, Lee YC, Xia W, Wang YN, Wu ML, Chuang YH, Lai CH, Chang WC (2008) Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression. Nucleic Acids Res 36(13):4337–4351. doi:10.1093/nar/gkn417

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Jaganathan S, Yue P, Paladino DC, Bogdanovic J, Huo Q, Turkson J (2011) A functional nuclear epidermal growth factor receptor, SRC and Stat3 heteromeric complex in pancreatic cancer cells. PLoS ONE 6(5):e19605. doi:10.1371/journal.pone.0019605

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Lo HW, Cao X, Zhu H, Ali-Osman F (2010) Cyclooxygenase-2 is a novel transcriptional target of the nuclear EGFR-STAT3 and EGFRvIII-STAT3 signaling axes. Mol Cancer Res 8(2):232–245. doi:10.1158/1541-7786.mcr-09-0391

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Huang WC, Chen YJ, Li LY, Wei YL, Hsu SC, Tsai SL, Chiu PC, Huang WP, Wang YN, Chen CH, Chang WC, Chang WC, Chen AJ, Tsai CH, Hung MC (2011) Nuclear translocation of epidermal growth factor receptor by Akt-dependent phosphorylation enhances breast cancer-resistant protein expression in gefitinib-resistant cells. J Biol Chem 286(23):20558–20568. doi:10.1074/jbc.M111.240796

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Wang SC, Nakajima Y, Yu YL, Xia W, Chen CT, Yang CC, McIntush EW, Li LY, Hawke DH, Kobayashi R, Hung MC (2006) Tyrosine phosphorylation controls PCNA function through protein stability. Nat Cell Biol 8(12):1359–1368. doi:10.1038/ncb1501

    CAS  PubMed  Google Scholar 

  109. Nowsheen S, Cooper T, Stanley JA, Yang ES (2012) Synthetic lethal interactions between EGFR and PARP inhibition in human triple negative breast cancer cells. PLoS ONE 7(10):e46614. doi:10.1371/journal.pone.0046614

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Hadzisejdic I, Mustac E, Jonjic N, Petkovic M, Grahovac B (2010) Nuclear EGFR in ductal invasive breast cancer: correlation with cyclin-D1 and prognosis. Mod Pathol 23(3):392–403. doi:http://www.nature.com/modpathol/journal/v23/n3/suppinfo/modpathol2009166s1.html

    CAS  PubMed  Google Scholar 

  111. Wheeler DL, Huang S, Kruser TJ, Nechrebecki MM, Armstrong EA, Benavente S, Gondi V, Hsu KT, Harari PM (2008) Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene 27(28):3944–3956. doi:10.1038/onc.2008.19

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Wheeler DL, Iida M, Kruser TJ, Nechrebecki MM, Dunn EF, Armstrong EA, Huang S, Harari PM (2009) Epidermal growth factor receptor cooperates with Src family kinases in acquired resistance to cetuximab. Cancer Biol Ther 8(8):696–703

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Dittmann K, Mayer C, Fehrenbacher B, Schaller M, Kehlbach R, Rodemann HP (2011) Nuclear epidermal growth factor receptor modulates cellular radio-sensitivity by regulation of chromatin access. Radiother Oncol 99(3):317–322. doi:10.1016/j.radonc.2011.06.001

    CAS  PubMed  Google Scholar 

  114. Schmidt-Ullrich RK, Mikkelsen RB, Dent P, Todd DG, Valerie K, Kavanagh BD, Contessa JN, Rorrer WK, Chen PB (1997) Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation. Oncogene 15(10):1191–1197. doi:10.1038/sj.onc.1201275

    CAS  PubMed  Google Scholar 

  115. Schmidt-Ullrich RK, Valerie K, Fogleman PB, Walters J (1996) Radiation-induced autophosphorylation of epidermal growth factor receptor in human malignant mammary and squamous epithelial cells. Radiat Res 145(1):81–85

    CAS  PubMed  Google Scholar 

  116. Contessa JN, Hampton J, Lammering G, Mikkelsen RB, Dent P, Valerie K, Schmidt-Ullrich RK (2002) Ionizing radiation activates Erb-B receptor dependent Akt and p70 S6 kinase signaling in carcinoma cells. Oncogene 21(25):4032–4041. doi:10.1038/sj.onc.1205500

    CAS  PubMed  Google Scholar 

  117. Azzariti A, Xu JM, Porcelli L, Paradiso A (2004) The schedule-dependent enhanced cytotoxic activity of 7-ethyl-10-hydroxy-camptothecin (SN-38) in combination with Gefitinib (Iressa, ZD1839). Biochem Pharmacol 68(1):135–144. doi:10.1016/j.bcp.2004.03.014

    CAS  PubMed  Google Scholar 

  118. Benhar M, Engelberg D, Levitzki A (2002) Cisplatin-induced activation of the EGF receptor. Oncogene 21(57):8723–8731. doi:10.1038/sj.onc.1205980

    CAS  PubMed  Google Scholar 

  119. Sumitomo M, Asano T, Asakuma J, Asano T, Horiguchi A, Hayakawa M (2004) ZD1839 modulates paclitaxel response in renal cancer by blocking paclitaxel-induced activation of the epidermal growth factor receptor-extracellular signal-regulated kinase pathway. Clin Cancer Res (an official journal of the American association for cancer research) 10(2):794–801

    CAS  PubMed  Google Scholar 

  120. Van Schaeybroeck S, Karaiskou-McCaul A, Kelly D, Longley D, Galligan L, Van Cutsem E, Johnston P (2005) Epidermal growth factor receptor activity determines response of colorectal cancer cells to gefitinib alone and in combination with chemotherapy. Clin Cancer Res (an official journal of the American association for cancer research) 11(20):7480–7489. doi:10.1158/1078-0432.ccr-05-0328

    PubMed  Google Scholar 

  121. Chun PY, Feng FY, Scheurer AM, Davis MA, Lawrence TS, Nyati MK (2006) Synergistic effects of gemcitabine and gefitinib in the treatment of head and neck carcinoma. Cancer Res 66(2):981–988. doi:10.1158/0008-5472.can-05-2665

    CAS  PubMed  Google Scholar 

  122. Abdelmohsen K, von Montfort C, Stuhlmann D, Gerber PA, Decking UK, Sies H, Klotz LO (2005) Doxorubicin induces EGF receptor-dependent downregulation of gap junctional intercellular communication in rat liver epithelial cells. Biol Chem 386(3):217–223. doi:10.1515/bc.2005.027

    CAS  PubMed  Google Scholar 

  123. Bowers G, Reardon D, Hewitt T, Dent P, Mikkelsen RB, Valerie K, Lammering G, Amir C, Schmidt-Ullrich RK (2001) The relative role of ErbB1-4 receptor tyrosine kinases in radiation signal transduction responses of human carcinoma cells. Oncogene 20(11):1388–1397. doi:10.1038/sj.onc.1204255

    CAS  PubMed  Google Scholar 

  124. Hagan M, Yacoub A, Dent P (2004) Ionizing radiation causes a dose-dependent release of transforming growth factor alpha in vitro from irradiated xenografts and during palliative treatment of hormone-refractory prostate carcinoma. Clin Cancer Res (an official journal of the American association for cancer research) 10(17):5724–5731. doi:10.1158/1078-0432.ccr-04-0420

    CAS  PubMed  Google Scholar 

  125. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461(7267):1071–1078

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Wilson TE, Grawunder U, Lieber MR (1997) Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature 388(6641):495–498. doi:10.1038/41365

    CAS  PubMed  Google Scholar 

  127. Budman J, Chu G (2005) Processing of DNA for nonhomologous end-joining by cell-free extract. EMBO J 24(4):849–860

    CAS  PubMed Central  PubMed  Google Scholar 

  128. San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229–257

    CAS  PubMed  Google Scholar 

  129. Bandyopadhyay D, Mandal M, Adam L, Mendelsohn J, Kumar R (1998) Physical interaction between epidermal growth factor receptor and DNA-dependent protein kinase in mammalian cells. J Biol Chem 273(3):1568–1573

    CAS  PubMed  Google Scholar 

  130. Friedmann BJ, Caplin M, Savic B, Shah T, Lord CJ, Ashworth A, Hartley JA, Hochhauser D (2006) Interaction of the epidermal growth factor receptor and the DNA-dependent protein kinase pathway following gefitinib treatment. Mol Cancer Ther 5(2):209–218. doi:10.1158/1535-7163.mct-05-0239

    CAS  PubMed  Google Scholar 

  131. Magne N, Fischel JL, Tiffon C, Formento P, Dubreuil A, Renee N, Formento JL, Francoual M, Ciccolini J, Etienne MC, Milano G (2003) Molecular mechanisms underlying the interaction between ZD1839 (‘Iressa’) and cisplatin/5-fluorouracil. Br J Cancer 89(3):585–592. doi:10.1038/sj.bjc.6601131

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Golding SE, Morgan RN, Adams BR, Hawkins AJ, Povirk LF, Valerie K (2009) Pro-survival AKT and ERK signaling from EGFR and mutant EGFRvIII enhances DNA double-strand break repair in human glioma cells. Cancer Biol Ther 8(8):730–738

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Das AK, Chen BP, Story MD, Sato M, Minna JD, Chen DJ, Nirodi CS (2007) Somatic mutations in the tyrosine kinase domain of epidermal growth factor receptor (EGFR) abrogate EGFR-mediated radioprotection in non-small cell lung carcinoma. Cancer Res 67(11):5267–5274. doi:10.1158/0008-5472.can-07-0242

    CAS  PubMed  Google Scholar 

  134. Li L, Wang H, Yang ES, Arteaga CL, Xia F (2008) Erlotinib attenuates homologous recombinational repair of chromosomal breaks in human breast cancer cells. Cancer Res 68(22):9141–9146. doi:10.1158/0008-5472.can-08-1127

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Zhang J, Willers H, Feng Z, Ghosh JC, Kim S, Weaver DT, Chung JH, Powell SN, Xia F (2004) Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol 24(2):708–718

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Nowsheen S, Bonner JA, Lobuglio AF, Trummell H, Whitley AC, Dobelbower MC, Yang ES (2011) Cetuximab augments cytotoxicity with poly (adp-ribose) polymerase inhibition in head and neck cancer. PLoS ONE 6(8):e24148. doi:10.1371/journal.pone.0024148

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Feng Z, Kachnic L, Zhang J, Powell SN, Xia F (2004) DNA damage induces p53-dependent BRCA1 nuclear export. J Biol Chem 279(27):28574–28584. doi:10.1074/jbc.M404137200

    CAS  PubMed  Google Scholar 

  138. Chakravarti A, Chakladar A, Delaney MA, Latham DE, Loeffler JS (2002) The epidermal growth factor receptor pathway mediates resistance to sequential administration of radiation and chemotherapy in primary human glioblastoma cells in a RAS-dependent manner. Cancer Res 62(15):4307–4315

    CAS  PubMed  Google Scholar 

  139. Liang K, Ang KK, Milas L, Hunter N, Fan Z (2003) The epidermal growth factor receptor mediates radioresistance. Int J Radiat Oncol Biol Phys 57(1):246–254

    CAS  PubMed  Google Scholar 

  140. Mendelsohn J, Baselga J (2000) The EGF receptor family as targets for cancer therapy. Oncogene 19(56):6550–6565. doi:10.1038/sj.onc.1204082

    CAS  PubMed  Google Scholar 

  141. Ward WH, Cook PN, Slater AM, Davies DH, Holdgate GA, Green LR (1994) Epidermal growth factor receptor tyrosine kinase. Investigation of catalytic mechanism, structure-based searching and discovery of a potent inhibitor. Biochem Pharmacol 48(4):659–666

    CAS  PubMed  Google Scholar 

  142. Levitzki A, Gazit A (1995) Tyrosine kinase inhibition: an approach to drug development. Science (New York, NY) 267(5205):1782–1788

    CAS  PubMed  Google Scholar 

  143. Goldstein NI, Prewett M, Zuklys K, Rockwell P, Mendelsohn J (1995) Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res (an official journal of the American association for cancer research) 1(11):1311–1318

    CAS  PubMed  Google Scholar 

  144. Fry DW, Bridges AJ, Denny WA, Doherty A, Greis KD, Hicks JL, Hook KE, Keller PR, Leopold WR, Loo JA, McNamara DJ, Nelson JM, Sherwood V, Smaill JB, Trumpp-Kallmeyer S, Dobrusin EM (1998) Specific, irreversible inactivation of the epidermal growth factor receptor and erbB2, by a new class of tyrosine kinase inhibitor. Proc Natl Acad Sci U S A 95(20):12022–12027

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Overholser JP, Prewett MC, Hooper AT, Waksal HW, Hicklin DJ (2000) Epidermal growth factor receptor blockade by antibody IMC-C225 inhibits growth of a human pancreatic carcinoma xenograft in nude mice. Cancer 89(1):74–82

    CAS  PubMed  Google Scholar 

  146. Daneshmand M, Parolin DA, Hirte HW, Major P, Goss G, Stewart D, Batist G, Miller WH Jr, Matthews S, Seymour L, Lorimer IA (2003) A pharmacodynamic study of the epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 in metastatic colorectal cancer patients. Clin Cancer Res (an official journal of the American association for cancer research) 9(7):2457–2464

    CAS  PubMed  Google Scholar 

  147. Tabernero J, Rojo E, Jimnez E, Montaner I, Santom L, Guix M, Rosen, Kovar A, Viaplana I, Baselga J (2002) A phase I pharmacokinetic (PK) and serial tumor and skin pharmacodynamic (PD) study of weekly, every 2 weeks or every 3 weeks 1-hour (h) infusion EMD72000, an humanized monoclonal anti-epidermal growth factor receptor (EGFR) antibody, in patients (p) with advanced tumors known to overexpress the EGFR. Eur J Cancer 38(Suppl 7):S69–S70. doi:http://dx.doi.org/10.1016/S0959-8049(02)80868-1

    Google Scholar 

  148. Huang SM, Bock JM, Harari PM (1999) Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res 59(8):1935–1940

    CAS  PubMed  Google Scholar 

  149. Harari PM, Huang SM (2001) Head and neck cancer as a clinical model for molecular targeting of therapy: combining EGFR blockade with radiation. Int J Radiat Oncol Biol Phys 49(2):427–433

    CAS  PubMed  Google Scholar 

  150. Di Gennaro E, Barbarino M, Bruzzese F, De Lorenzo S, Caraglia M, Abbruzzese A, Avallone A, Comella P, Caponigro F, Pepe S, Budillon A (2003) Critical role of both p27KIP1 and p21CIP1/WAF1 in the antiproliferative effect of ZD1839 (‘Iressa’), an epidermal growth factor receptor tyrosine kinase inhibitor, in head and neck squamous carcinoma cells. J Cell Physiol 195(1):139–150. doi:10.1002/jcp.10239

    CAS  PubMed  Google Scholar 

  151. Herbst RS, Hong WK (2002) IMC-C225, an anti-epidermal growth factor receptor monoclonal antibody for treatment of head and neck cancer. Semin Oncol 29(5 Suppl 14):18–30. doi:10.1053/sonc.2002.35644

    CAS  PubMed  Google Scholar 

  152. Huang SM, Harari PM (2000) Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: inhibition of damage repair, cell cycle kinetics, and tumor angiogenesis. Clin Cancer Res (an official journal of the American association for cancer research) 6(6):2166–2174

    CAS  PubMed  Google Scholar 

  153. Nyati MK, Maheshwari D, Hanasoge S, Sreekumar A, Rynkiewicz SD, Chinnaiyan AM, Leopold WR, Ethier SP, Lawrence TS (2004) Radiosensitization by pan ErbB inhibitor CI-1033 in vitro and in vivo. Clin Cancer Res (an official journal of the American association for cancer research) 10(2):691–700

    CAS  PubMed  Google Scholar 

  154. Milas L, Mason K, Hunter N, Petersen S, Yamakawa M, Ang K, Mendelsohn J, Fan Z (2000) In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody. Clin Cancer Res (an official journal of the American association for cancer research) 6(2):701–708

    CAS  PubMed  Google Scholar 

  155. Solomon B, Hagekyriakou J, Trivett MK, Stacker SA, McArthur GA, Cullinane C (2003) EGFR blockade with ZD1839 (“Iressa”) potentiates the antitumor effects of single and multiple fractions of ionizing radiation in human A431 squamous cell carcinoma. Epidermal growth factor receptor. Int J Radiat Oncol Biol Phys 55(3):713–723

    CAS  PubMed  Google Scholar 

  156. Saleh MN, Raisch KP, Stackhouse MA, Grizzle WE, Bonner JA, Mayo MS, Kim HG, Meredith RF, Wheeler RH, Buchsbaum DJ (1999) Combined modality therapy of A431 human epidermoid cancer using anti-EGFr antibody C225 and radiation. Cancer Biother Radiopharm 14(6):451–463

    CAS  PubMed  Google Scholar 

  157. Li J, Lin ML, Wiepz GJ, Guadarrama AG, Bertics PJ (1999) Integrin-mediated migration of murine B82L fibroblasts is dependent on the expression of an intact epidermal growth factor receptor. J Biol Chem 274(16):11209–11219

    CAS  PubMed  Google Scholar 

  158. Raben D, Helfrich B, Bunn PA Jr (2004) Targeted therapies for non-small-cell lung cancer: biology, rationale, and preclinical results from a radiation oncology perspective. Int J Radiat Oncol Biol Phys 59(2 Suppl):27–38. doi:10.1016/j.ijrobp.2004.01.054

    CAS  PubMed  Google Scholar 

  159. Sirotnak FM, Zakowski MF, Miller VA, Scher HI, Kris MG (2000) Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin Cancer Res (an official journal of the American association for cancer research) 6(12):4885–4892

    CAS  PubMed  Google Scholar 

  160. Haffty BG, Glazer PM (2003) Molecular markers in clinical radiation oncology. Oncogene 22(37):5915–5925. doi:10.1038/sj.onc.1206704

    CAS  PubMed  Google Scholar 

  161. Jameel JK, Rao VS, Cawkwell L, Drew PJ (2004) Radioresistance in carcinoma of the breast. Breast (Edinburgh, Scotland) 13(6):452–460. doi:10.1016/j.breast.2004.08.004

    CAS  PubMed  Google Scholar 

  162. Lammering G, Hewit TH, Holmes M, Valerie K, Hawkins W, Lin PS, Mikkelsen RB, Schmidt-Ullrich RK (2004) Inhibition of the type III epidermal growth factor receptor variant mutant receptor by dominant-negative EGFR-CD533 enhances malignant glioma cell radiosensitivity. Clin Cancer Res (an official journal of the American association for cancer research) 10(19):6732–6743. doi:10.1158/1078-0432.ccr-04-0393

    CAS  PubMed  Google Scholar 

  163. Zhou H, Kim YS, Peletier A, McCall W, Earp HS, Sartor CI (2004) Effects of the EGFR/HER2 kinase inhibitor GW572016 on EGFR- and HER2-overexpressing breast cancer cell line proliferation, radiosensitization, and resistance. Int J Radiat Oncol Biol Phys 58(2):344–352

    CAS  PubMed  Google Scholar 

  164. Rao GS, Murray S, Ethier SP (2000) Radiosensitization of human breast cancer cells by a novel ErbB family receptor tyrosine kinase inhibitor. Int J Radiat Oncol Biol Phys 48(5):1519–1528

    CAS  PubMed  Google Scholar 

  165. Feng FY, Lopez CA, Normolle DP, Varambally S, Li X, Chun PY, Davis MA, Lawrence TS, Nyati MK (2007) Effect of epidermal growth factor receptor inhibitor class in the treatment of head and neck cancer with concurrent radiochemotherapy in vivo. Clin Cancer Res (an official journal of the American association for cancer research) 13(8):2512–2518. doi:10.1158/1078-0432.ccr-06-2582

    CAS  PubMed  Google Scholar 

  166. Burris HA, 3rd (2004) Dual kinase inhibition in the treatment of breast cancer: initial experience with the EGFR/ErbB-2 inhibitor lapatinib. Oncologist 9(Suppl 3):10–15

    CAS  PubMed  Google Scholar 

  167. Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, Chirieac LR, Padera RF, Shapiro GI, Baum A, Himmelsbach F, Rettig WJ, Meyerson M, Solca F, Greulich H, Wong KK (2008) BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27(34):4702–4711. doi:10.1038/onc.2008.109

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Cao C, Lu S, Sowa A, Kivlin R, Amaral A, Chu W, Yang H, Di W, Wan Y (2008) Priming with EGFR tyrosine kinase inhibitor and EGF sensitizes ovarian cancer cells to respond to chemotherapeutical drugs. Cancer Lett 266(2):249–262. doi:10.1016/j.canlet.2008.02.062

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Hiraishi Y, Wada T, Nakatani K, Tojyo I, Matsumoto T, Kiga N, Negoro K, Fujita S (2008) EGFR inhibitor enhances cisplatin sensitivity of oral squamous cell carcinoma cell lines. Pathol Oncol Res 14(1):39–43. doi:10.1007/s12253-008-9020-5

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Chen J, Smith M, Kolinsky K, Adames V, Mehta N, Fritzky L, Rashed M, Wheeldon E, Linn M, Higgins B (2007) Antitumor activity of HER1/EGFR tyrosine kinase inhibitor erlotinib, alone and in combination with CPT-11 (irinotecan) in human colorectal cancer xenograft models. Cancer Chemother Pharmacol 59(5):651–659. doi:10.1007/s00280-006-0320-8

    CAS  PubMed  Google Scholar 

  171. Robert F, Ezekiel MP, Spencer SA, Meredith RF, Bonner JA, Khazaeli MB, Saleh MN, Carey D, LoBuglio AF, Wheeler RH, Cooper MR, Waksal HW (2001) Phase I study of anti-epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J Clin Oncol (official journal of the American society of clinical oncology) 19(13):3234–3243

    CAS  PubMed  Google Scholar 

  172. Bonner JA, Raisch KP, Trummell HQ, Robert F, Meredith RF, Spencer SA, Buchsbaum DJ, Saleh MN, Stackhouse MA, LoBuglio AF, Peters GE, Carroll WR, Waksal HW (2000) Enhanced apoptosis with combination C225/radiation treatment serves as the impetus for clinical investigation in head and neck cancers. J Clin Oncol (official journal of the American society of clinical oncology) 18(21 Suppl):47–53

    Google Scholar 

  173. Shintani S, Li C, Mihara M, Terakado N, Yano J, Nakashiro K, Hamakawa H (2003) Enhancement of tumor radioresponse by combined treatment with gefitinib (Iressa, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, is accompanied by inhibition of DNA damage repair and cell growth in oral cancer. Int J Cancer (Journal International du Cancer) 107(6):1030–1037. doi:10.1002/ijc.11437

    CAS  PubMed  Google Scholar 

  174. Carey LA, Rugo HS, Marcom PK, Mayer EL, Esteva FJ, Ma CX, Liu MC, Storniolo AM, Rimawi MF, Forero-Torres A, Wolff AC, Hobday TJ, Ivanova A, Chiu WK, Ferraro M, Burrows E, Bernard PS, Hoadley KA, Perou CM, Winer EP (2012) TBCRC 001: randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. J Clin Oncol (official journal of the American society of clinical oncology) 30(21):2615–2623. doi:10.1200/jco.2010.34.5579

    CAS  PubMed Central  PubMed  Google Scholar 

  175. O’shaughnessy J, Weckstein D, Vukelja S, McIntyre K, Krekow L, Holmes F, Asmar L, Blum J (2007) Preliminary results of a randomized phase II study of weekly irinotecan/carboplatin with or without cetuximab in patients with metastatic breast cancer. Breast Cancer Res Treat 106(Suppl 1):S32

    Google Scholar 

  176. Baselga J, Gomez P, Awada A, Greil R, Braga S, Climent M, Wardley A, Zubel A, Groos J, Kaufman B (2010) The addition of cetuximab to cisplatin increases overall response rate (ORR) and progression-free survival (PFS) in metastatic triple-negative breast cancer (TNBC): results of a randomized phase II study (BALI-1). In Annals of Oncology, vol. 21, pp. 96–96. GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND: OXFORD UNIV PRESS

    Google Scholar 

  177. Dickler MN, Rugo HS, Eberle CA, Brogi E, Caravelli JF, Panageas KS, Boyd J, Yeh B, Lake DE, Dang CT, Gilewski TA, Bromberg JF, Seidman AD, D’Andrea GM, Moasser MM, Melisko M, Park JW, Dancey J, Norton L, Hudis CA (2008) A phase II trial of erlotinib in combination with bevacizumab in patients with metastatic breast cancer. Clin Cancer Res (an official journal of the American association for cancer research) 14(23):7878–7883. doi:10.1158/1078-0432.ccr-08-0141

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Giaccone G, Herbst RS, Manegold C, Scagliotti G, Rosell R, Miller V, Natale RB, Schiller JH, Von Pawel J, Pluzanska A, Gatzemeier U, Grous J, Ochs JS, Averbuch SD, Wolf MK, Rennie P, Fandi A, Johnson DH (2004) Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial-INTACT 1. J Clin Oncol (official journal of the American society of clinical oncology) 22(5):777–784. doi:10.1200/jco.2004.08.001

    CAS  PubMed  Google Scholar 

  179. Herbst RS, Giaccone G, Schiller JH, Natale RB, Miller V, Manegold C, Scagliotti G, Rosell R, Oliff I, Reeves JA, Wolf MK, Krebs AD, Averbuch SD, Ochs JS, Grous J, Fandi A, Johnson DH (2004) Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial-INTACT 2. J Clin Oncol (official journal of the American society of clinical oncology) 22(5):785–794. doi:10.1200/jco.2004.07.215

    CAS  PubMed  Google Scholar 

  180. Herbst RS, Prager D, Hermann R, Fehrenbacher L, Johnson BE, Sandler A, Kris MG, Tran HT, Klein P, Li X, Ramies D, Johnson DH, Miller VA (2005) TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol (official journal of the American society of clinical oncology) 23(25):5892–5899. doi:10.1200/jco.2005.02.840

    CAS  PubMed  Google Scholar 

  181. Moore MJ (2005) Brief communication: a new combination in the treatment of advanced pancreatic cancer. Semin Oncol 32(6 Suppl 8):5–6. doi:10.1053/j.seminoncol.2005.07.017

    PubMed  Google Scholar 

  182. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA, Campos D, Lim R, Ding K, Clark G, Voskoglou-Nomikos T, Ptasynski M, Parulekar W (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol (official journal of the American society of clinical oncology) 25(15):1960–1966. doi:10.1200/jco.2006.07.9525

    CAS  PubMed  Google Scholar 

  183. Bos M, Mendelsohn J, Kim YM, Albanell J, Fry DW, Baselga J (1997) PD153035, a tyrosine kinase inhibitor, prevents epidermal growth factor receptor activation and inhibits growth of cancer cells in a receptor number-dependent manner. Clin Cancer Res (an official journal of the American association for cancer research) 3(11):2099–2106

    CAS  PubMed  Google Scholar 

  184. Eberhard DA, Johnson BE, Amler LC, Goddard AD, Heldens SL, Herbst RS, Ince WL, Janne PA, Januario T, Johnson DH, Klein P, Miller VA, Ostland MA, Ramies DA, Sebisanovic D, Stinson JA, Zhang YR, Seshagiri S, Hillan KJ (2005) Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol (official journal of the American society of clinical oncology) 23(25):5900–5909. doi:10.1200/jco.2005.02.857

    CAS  PubMed  Google Scholar 

  185. Moroni M, Veronese S, Benvenuti S, Marrapese G, Sartore-Bianchi A, Di Nicolantonio F, Gambacorta M, Siena S, Bardelli A (2005) Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol 6(5):279–286. doi:10.1016/s1470-2045(05)70102-9

    CAS  PubMed  Google Scholar 

  186. Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, Zanon C, Moroni M, Veronese S, Siena S, Bardelli A (2007) Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res 67(6):2643–2648. doi:10.1158/0008-5472.can-06-4158

    CAS  PubMed  Google Scholar 

  187. Chung KY, Shia J, Kemeny NE, Shah M, Schwartz GK, Tse A, Hamilton A, Pan D, Schrag D, Schwartz L, Klimstra DS, Fridman D, Kelsen DP, Saltz LB (2005) Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol (official journal of the American society of clinical oncology) 23(9):1803–1810. doi:10.1200/jco.2005.08.037

    CAS  PubMed  Google Scholar 

  188. Elie C, Geay JF, Morcos M, Le Tourneau A, Girre V, Broet P, Marmey B, Chauvenet L, Audouin J, Pujade-Lauraine E, Camilleri-Broet S (2004) Lack of relationship between EGFR-1 immunohistochemical expression and prognosis in a multicentre clinical trial of 93 patients with advanced primary ovarian epithelial cancer (GINECO group). Br J Cancer 91(3):470–475. doi:10.1038/sj.bjc.6601961

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Chinnaiyan P, Huang S, Vallabhaneni G, Armstrong E, Varambally S, Tomlins SA, Chinnaiyan AM, Harari PM (2005) Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva). Cancer Res 65(8):3328–3335. doi:10.1158/0008-5472.can-04-3547

    CAS  PubMed  Google Scholar 

  190. Torres MA, Raju U, Molkentine D, Riesterer O, Milas L, Ang KK (2011) AC480, formerly BMS-599626, a pan Her inhibitor, enhances radiosensitivity and radioresponse of head and neck squamous cell carcinoma cells in vitro and in vivo. Invest New Drugs 29(4):554–561. doi:10.1007/s10637-010-9389-3

    CAS  PubMed  Google Scholar 

  191. Cooper T, Rodriguez M, Trummell HQ, Weaver A, Bonner JA, Yang ES (2013) PARP inhibition in HPV positive head and neck cancers. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6–10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 635. doi:10.1158/1538-7445.AM2013-635

    Google Scholar 

  192. Whitley A, Nowsheen S, Cooper T, LoBuglio A, Bonner J, Yang ES (2012) Synthetic lethal interaction between EGFR and PARP inhibition. [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 4684. doi:1538-7445.AM2012-4684

    Google Scholar 

  193. Verhoog LC, Brekelmans CT, Seynaeve C, van den Bosch LM, Dahmen G, van Geel AN, Tilanus-Linthorst MM, Bartels CC, Wagner A, van den Ouweland A, Devilee P, Meijers-Heijboer EJ, Klijn JG (1998) Survival and tumour characteristics of breast-cancer patients with germline mutations of BRCA1. Lancet 351(9099):316–321

    CAS  PubMed  Google Scholar 

  194. Lakhani SR, Reis-Filho JS, Fulford L, Penault-Llorca F, van der Vijver M, Parry S, Bishop T, Benitez J, Rivas C, Bignon YJ, Chang-Claude J, Hamann U, Cornelisse CJ, Devilee P, Beckmann MW, Nestle-Kramling C, Daly PA, Haites N, Varley J, Lalloo F, Evans G, Maugard C, Meijers-Heijboer H, Klijn JG, Olah E, Gusterson BA, Pilotti S, Radice P, Scherneck S, Sobol H, Jacquemier J, Wagner T, Peto J, Stratton MR, McGuffog L, Easton DF (2005) Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res (an official journal of the American association for cancer research) 11(14):5175–5180. doi:10.1158/1078-0432.ccr-04-2424

    CAS  PubMed  Google Scholar 

  195. Nowsheen S, Cooper T, Bonner JA, LoBuglio AF, Yang ES (2012) HER2 overexpression renders human breast cancers sensitive to PARP inhibition independently of any defect in homologous recombination DNA repair. Cancer Res 72(18):4796–4806

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Saal LH, Holm K, Maurer M, Memeo L, Su T, Wang X, Yu JS, Malmstrom PO, Mansukhani M, Enoksson J, Hibshoosh H, Borg A, Parsons R (2005) PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res 65(7):2554–2559. doi:10.1158/0008-5472-can-04-3913

    CAS  PubMed  Google Scholar 

  197. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10(16):5367–5374

    CAS  PubMed  Google Scholar 

  198. Gewinner C, Wang ZC, Richardson A, Teruya-Feldstein J, Etemadmoghadam D, Bowtell D, Barretina J, Lin WM, Rameh L, Salmena L, Pandolfi PP, Cantley LC (2009) Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 16(2):115–125. doi:10.1016/j.ccr.2009.06.006

    CAS  PubMed Central  PubMed  Google Scholar 

  199. Andre F, Job B, Dessen P, Tordai A, Michiels S, Liedtke C, Richon C, Yan K, Wang B, Vassal G (2009) Molecular characterization of breast cancer with high-resolution oligonucleotide comparative genomic hybridization array. Clin Cancer Res 15(2):441–451

    CAS  PubMed  Google Scholar 

  200. Yap TA, Sandhu SK, Carden CP, de Bono JS (2011) Poly(ADP-ribose) polymerase (PARP) inhibitors: exploiting a synthetic lethal strategy in the clinic. CA Cancer J Clin 61(1):31–49. doi:10.3322/caac.20095

    PubMed  Google Scholar 

  201. Kimbung S, Biskup E, Johansson I, Aaltonen K, Ottosson-Wadlund A, Gruvberger-Saal S, Cunliffe H, Fadeel B, Loman N, Berglund P, Hedenfalk I (2012) Co-targeting of the PI3K pathway improves the response of BRCA1 deficient breast cancer cells to PARP1 inhibition. Cancer Lett 319(2):232–241. doi:10.1016/j.canlet.2012.01.015

    CAS  PubMed  Google Scholar 

  202. Kumar A, Fernandez-Capetillo O, Carrera AC (2010) Nuclear phosphoinositide 3-kinase beta controls double-strand break DNA repair. Proc Natl Acad Sci U S A 107(16):7491–7496. doi:10.1073/pnas.0914242107

    CAS  PubMed Central  PubMed  Google Scholar 

  203. Kao GD, Jiang Z, Fernandes AM, Gupta AK, Maity A (2007) Inhibition of phosphatidylinositol-3-OH kinase/Akt signaling impairs DNA repair in glioblastoma cells following ionizing radiation. J Biol Chem 282(29):21206–21212. doi:10.1074/jbc.M703042200

    CAS  PubMed Central  PubMed  Google Scholar 

  204. Ibrahim YH, Garcia-Garcia C, Serra V, He L, Torres-Lockhart K, Prat A, Anton P, Cozar P, Guzman M, Grueso J, Rodriguez O, Calvo MT, Aura C, Diez O, Rubio IT, Perez J, Rodon J, Cortes J, Ellisen LW, Scaltriti M, Baselga J (2012) PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer discovery 2(11):1036–1047. doi:10.1158/2159-8290.cd-11-0348

    CAS  PubMed  Google Scholar 

  205. Juvekar A, Burga LN, Hu H, Lunsford EP, Ibrahim YH, Balmana J, Rajendran A, Papa A, Spencer K, Lyssiotis CA, Nardella C, Pandolfi PP, Baselga J, Scully R, Asara JM, Cantley LC, Wulf GM (2012) Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov 2(11):1048–1063. doi:10.1158/2159-8290.cd-11-0336

    CAS  PubMed Central  PubMed  Google Scholar 

  206. Bianco R, Shin I, Ritter CA, Yakes FM, Basso A, Rosen N, Tsurutani J, Dennis PA, Mills GB, Arteaga CL (2003) Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 22(18):2812–2822. doi:10.1038/sj.onc.1206388

    CAS  PubMed  Google Scholar 

  207. Petrocelli T, Slingerland JM (2001) PTEN deficiency: a role in mammary carcinogenesis. Breast Cancer Res 3(6):356–360

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Shi W, Zhang X, Pintilie M, Ma N, Miller N, Banerjee D, Tsao MS, Mak T, Fyles A, Liu FF (2003) Dysregulated PTEN-PKB and negative receptor status in human breast cancer. Int J Cancer (Journal International du Cancer) 104(2):195–203. doi:10.1002/ijc.10909

    CAS  PubMed  Google Scholar 

  209. Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP, Yin Y (2007) Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128(1):157–170. doi:10.1016/j.cell.2006.11.042

    CAS  PubMed  Google Scholar 

  210. McEllin B, Camacho CV, Mukherjee B, Hahm B, Tomimatsu N, Bachoo RM, Burma S (2010) PTEN loss compromises homologous recombination repair in astrocytes: implications for glioblastoma therapy with temozolomide or poly(ADP-ribose) polymerase inhibitors. Cancer Res 70(13):5457–5464. doi:10.1158/0008-5472.can-09-4295

    CAS  PubMed Central  PubMed  Google Scholar 

  211. Mendes-Pereira AM, Martin SA, Brough R, McCarthy A, Taylor JR, Kim JS, Waldman T, Lord CJ, Ashworth A (2009) Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med 1(6–7):315–322. doi:10.1002/emmm.200900041

    CAS  PubMed Central  PubMed  Google Scholar 

  212. Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F, Teruya-Feldstein J, Pandolfi PP (2008) The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature 455(7214):813–817. doi:10.1038/nature07290

    CAS  PubMed Central  PubMed  Google Scholar 

  213. Golding SE, Rosenberg E, Neill S, Dent P, Povirk LF, Valerie K (2007) Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response. Cancer Res 67(3):1046–1053. doi:10.1158/0008-5472.can-06-2371

    CAS  PubMed  Google Scholar 

  214. Yacoub A, Park JS, Qiao L, Dent P, Hagan MP (2001) MAPK dependence of DNA damage repair: ionizing radiation and the induction of expression of the DNA repair genes XRCC1 and ERCC1 in DU145 human prostate carcinoma cells in a MEK1/2 dependent fashion. Int J Radiat Biol 77(10):1067–1078. doi:10.1080/09553000110069317

    CAS  PubMed  Google Scholar 

  215. Garcia Campelo R, Felip E, Massuti B, Majem M, Carcereny E, Cardenal F, Molina-Vila MA, Martinez Marti A, Marti-Ciriquian JL, Alonso-Jaudenes Curbera G, Pallares C, Palmero R, Gonzalez-Arenas MC, Mayo-de las Casas C, Sanchez-Ronco M, Rosell R (2013) Phase IB study of olaparib (AZD2281) plus gefitinib in EGFR-mutant patients (p) with advanced non-small-cell lung cancer (NSCLC) (NCT01513174/GECP-GOAL). ASCO Meeting Abstracts 31(15_suppl):2581

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Sidney Kimmel Foundation, the Breast Cancer Research Foundation of Alabama, Breast SPORE at UAB Career Development Award, AACR/Genentech, the Susan G. Komen Foundation, the Center for Clinical and Translational Science (CCTS), and the Medical Scientist Training Program (MSTP) at the University of Alabama in Birmingham for their support of some of the work mentioned in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eddy S. Yang MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stanley, J., Yang, E. (2015). Synthetic Sickness with Molecularly Targeted Agents Against the EGFR Pathway. In: Curtin, N., Sharma, R. (eds) PARP Inhibitors for Cancer Therapy. Cancer Drug Discovery and Development, vol 83. Humana Press, Cham. https://doi.org/10.1007/978-3-319-14151-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14151-0_16

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-14150-3

  • Online ISBN: 978-3-319-14151-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics