Stacked Auto-encoders for Classification of 3D Spine Models in Adolescent Idiopathic Scoliosis

  • William E. Thong
  • Hubert Labelle
  • Jesse Shen
  • Stefan Parent
  • Samuel KadouryEmail author
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 20)


Current classification systems for adolescent idiopathic scoliosis lack information on how the spine is deformed in three dimensions (3D), which can mislead further treatment recommendations. We propose an approach to address this issue by a deep learning method for the classification of 3D spine reconstructions of patients. A low-dimensional manifold representation of the spine models was learnt by stacked auto-encoders. A K-Means++ algorithm using a probabilistic seeding method clustered the low-dimensional codes to discover sub-groups in the studied population. We evaluated the method with a case series analysis of 155 patients with Lenke Type-1 thoracic spinal deformations recruited at our institution. The clustering algorithm proposed 5 sub-groups from the thoracic population, yielding statistically significant differences in clinical geometric indices between all clusters. These results demonstrate the presence of 3D variability within a pre-defined 2D group of spinal deformities.


Adolescent Idiopathic Scoliosis Cobb Angle Cluster Centroid Deep Neural Network Local Linear Embedding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms. pp. 1027–1035. Society for industrial and applied mathematics (2007)Google Scholar
  2. 2.
    Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence (2013)Google Scholar
  3. 3.
    Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math expression compiler. In: Proceedings of the Python for scientific computing conference (SciPy) (2010)Google Scholar
  4. 4.
    Duong, L., Cheriet, F., Labelle, H.: Three-dimensional classification of spinal deformities using fuzzy clustering. Spine 31(8), 923–930 (2006)CrossRefGoogle Scholar
  5. 5.
    Duong, L., Cheriet, F., Labelle, H.: Three-dimensional subclassification of lenke type 1 scoliotic curves. J. Spinal Disord. and Tech. 22(2), 135–143 (2009)CrossRefGoogle Scholar
  6. 6.
    Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science (New York) 313(5786), 504–507 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Kadoury, S., Labelle, H.: Classification of three-dimensional thoracic deformities in adolescent idiopathic scoliosis from a multivariate analysis. Euro. Spine J. 21(1), 40–49 (2012)CrossRefGoogle Scholar
  8. 8.
    King, H.A., Moe, J.H., Bradford, D.S., Winter, R.B.: The selection of fusion levels in thoracic idiopathic scoliosis. J. Bone and Jt. Surg. 65(9), 1302–1313 (1983)Google Scholar
  9. 9.
    Labelle, H., Aubin, C.E., Jackson, R., Lenke, L., Newton, P., Parent, S.: Seeing the spine in 3d: how will it change what we do? J. Pediatr. Orthop. 31, S37–S45 (2011)CrossRefGoogle Scholar
  10. 10.
    Lenke, L., Betz, R., Harms, J., Bridwell, K., Clements, D., Lowe, T., Blanke, K.: Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J. Bone Jt. Surg. Am. bf 83-A(8), 1169–1181 (2001)Google Scholar
  11. 11.
    van der Maaten, L.J., Postma, E.O., van den Herik, H.J.: Dimensionality reduction: A comparative review. J. Mach. Learn. Res. 10(1–41), 66–71 (2009)Google Scholar
  12. 12.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Pomero, V., Mitton, D., Laporte, S., de Guise, J.A., Skalli, W.: Fast accurate stereoradiographic 3d-reconstruction of the spine using a combined geometric and statistic model. Clin. Biomech. 19(3), 240–247 (2004)CrossRefGoogle Scholar
  14. 14.
    Ray, S., Turi, R.H.: Determination of number of clusters in k-means clustering and application in colour image segmentation. In: Proceedings of the 4th international conference on advances in pattern recognition and digital techniques. pp. 137–143 (1999)Google Scholar
  15. 15.
    Sangole, A.P., Aubin, C., Labelle, H., Stokes, I.A.F., Lenke, L.G., Jackson, R., Newton, P.: Three-dimensional classification of thoracic scoliotic curves. Spine 34(1), 91–99 (2009)Google Scholar
  16. 16.
    Stokes, I.A., Bigalow, L.C., Moreland, M.S.: Measurement of axial rotation of vertebrae in scoliosis. Spine 11(3), 213–218 (1986)CrossRefGoogle Scholar
  17. 17.
    Stokes, I.A., Sangole, A.P., Aubin, C.E.: Classification of scoliosis deformity 3-d spinal shape by cluster analysis. Spine 34(6), 584–590 (2009)CrossRefGoogle Scholar
  18. 18.
    Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning. pp. 1096–1103. ACM (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • William E. Thong
    • 1
  • Hubert Labelle
    • 2
  • Jesse Shen
    • 2
  • Stefan Parent
    • 2
  • Samuel Kadoury
    • 3
    Email author
  1. 1.MEDICALÉcole Polytechnique de MontréalMontréalCanada
  2. 2.Department of Surgery, CHU Sainte-Justine Research CenterUniversité de MontréalMontréalCanada
  3. 3.CHU Sainte-Justine Research Center, MEDICALÉcole Polytechnique de MontréalMontréalCanada

Personalised recommendations