Automated 3D Lumbar Intervertebral Disc Segmentation from MRI Data Sets

  • Xiao Dong
  • Guoyan ZhengEmail author
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 20)


This paper proposed an automated 3D lumbar intervertebral disc (IVD) segmentation strategy from MRI data. Starting from two user supplied landmarks, the geometrical parameters of all lumbar vertebral bodies and intervertebral discs are automatically extracted from a mid-sagittal slice using a graphical model based approach. After that, a three-dimensional (3D) variable-radius soft tube model of the lumbar spine column is built to guide the 3D disc segmentation. The disc segmentation is achieved as a multi-kernel diffeomorphic registration between a 3D template of the disc and the observed MRI data. Experiments on 15 patient data sets showed the robustness and the accuracy of the proposed algorithm.


Disc Segmentation Lumbar Spinal Column Spin Column Diffeomorphic Registration Vertebral Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Modic, M., Ross, J.: Lumbar degenerative disk disease. Radiology 245(1), 43–61 (2007)CrossRefGoogle Scholar
  2. 2.
    Parizel, P., Goethem, J.V., den Hauwe, L.V., Voormolen, M.: Degenerative disc disease. In: Van Goethem, J. (ed.) Spinal Imaging—Diagnostic imaging of the spine and spinal cord, pp. 122–133. Springer, Berlin (2007)Google Scholar
  3. 3.
    Tsai, M., Jou, J., Hsieh, M.: A new method for lumbar herniated intervertebral disc diagnosis based on image analysis of transverse sections. Comput. Med. Imaging Graph. 26(6), 369–380 (2002)CrossRefGoogle Scholar
  4. 4.
    Niemelainen, R., Videman, T., Dhillon, S., Battie, M.: Quantitative measurement of intervertebral disc signal using mri. Clin. Radiol. 63(3), 252–255 (2008)CrossRefGoogle Scholar
  5. 5.
    Schmidt, S., Kappes, J.H., Bergtholdt, M., Pekar, V., Dries, S., Bystrov, D., Schnorr, C.: Spine detection and labeling using a parts-based graphical model. In: N. Karssemeijer, B.L. (ed.) IPMI, pp. 122–133. Springer, Berlin (2007)Google Scholar
  6. 6.
    Corso, J., Alomari, R., Chaudhary, V.: Lumbar disc localization and labeling with a probabilistic model on both pixel and object features. In: Metaxas, e.a., D. (ed.) MICCAI, pp. 202–210. Springer, Berlin (2008)Google Scholar
  7. 7.
    Chevrefils, C., Cheriet, F., Aubin, C., Grimard, G.: Texture analysis for automatic segmentation of intervertebral disks of scoliotic spines from mr images. IEEE Trans. Inf. Technol. Biomed. 13(4), 608–620 (2009)CrossRefGoogle Scholar
  8. 8.
    Michopoulou, S., Costaridou, L., Panagiotopoulos, E., Speller, R., Panayiotakis, G., Todd-Pokropek, A.: Atlas-based segmentation of degenerated lumbar intervertebral discs from mr images of the spine. IEEE Trans. Biomed. Eng. 56(9), 2225–2231 (2009)Google Scholar
  9. 9.
    Ayed, I.B., Punithakumar, K., Garvin, G., Romano, W., Li, S.: Graph cuts with invariant object-interaction priors: application to intervertebral disc segmentation. In: G. Szekely, H.H. (ed.) IPMI, pp. 221–232. Springer, Berlin (2011)Google Scholar
  10. 10.
    Neubert, A., Fripp, J., Schwarz, R., Lauer, L., Salvado, O., Crozier, S.: Automated detection, 3d segmentation and analysis of high resolution spine mr images using statistical shape models. Phys. Med. Biol. 57, 8357–8376 (2012)CrossRefGoogle Scholar
  11. 11.
    Law, M., Tay, K., Leung, A., Garvin, G., Li, S.: Intervertebral disc segmentation in mr images using anisotropic oriented flux. Med. Image Anal. 17(1), 43–61 (2013)CrossRefGoogle Scholar
  12. 12.
    Glocker, B., Feulner, J., Criminisi, A., Haynor, D., Konukoglu, E.: Automatic localization and identification of vertebrae in arbitrary field-of-view ct scans. MICCAI, pp. 590–598. Springer-Verlag, Berlin (2012)Google Scholar
  13. 13.
    Glocker, B., Zikic, D., Konukoglu, E., Haynor, D., Criminisi, A.: Vertebrae localization in pathological spine ct via dense classification from sparse annotations. MICCAI, pp. 262–270. Springer, Berlin (2013)Google Scholar
  14. 14.
    Dong, X., Lu, H., Sakurai, Y., Yamagata, H., Zheng, G., Reyes, M.: Automated intervertebral disc detection from low resolution, sparse mri images for the planning of scan geometries. In: Wang, F., Yan, P., Suzuki, K., Shen, D. (eds.) Machine Learning Medical Imaging. Lecture Notes in Computer Science, pp. 10–17. Springer, Berlin Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Risser, L., Vialard, F.X., Wolz, R., Murgasova, M., Holm, D.D., Rueckert, D.: Simultaneous multiscale registration using large deformation diffeomorphic metric mapping. IEEE Trans. Med. Imaging 30(10), 1746–1759 (2011)CrossRefGoogle Scholar
  16. 16.
    Grenander, U., Miller, M.I.: Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics LVI(4), pp. 617–694. (1998)Google Scholar
  17. 17.
    Beg, M.F., Miller, M.I., Trouv, A., Younes, L.: Computing large deformation metric mappings via geodesic flow of diffeomorphisms. Int. J. Comput. Vis. 61, 139–157 (2005)CrossRefGoogle Scholar
  18. 18.
    Miller, M.I., Trouv, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging. Vis. 24(2), 209–228 (2006)CrossRefGoogle Scholar
  19. 19.
    Hart, G.L., Zach, C., Niethammer, M.: An optimal control approach for deformable registration. In: Computer Vision and Pattern Recognition. (2009)Google Scholar
  20. 20.
    Vialard, F.X., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3d image registration via geodesic shooting using an efficient adjoint calculation. Int. J. Comput. Vis. 97, 229–241 (2012)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringSoutheast UniversityNanjingChina
  2. 2.Institute for Surgical Technology and BiomechanicsUniversity of BernBernSwitzerland

Personalised recommendations