Advertisement

Detecting Walking in Synchrony Through Smartphone Accelerometer and Wi-Fi Traces

  • Enrique Garcia-Ceja
  • Venet OsmaniEmail author
  • Alban Maxhuni
  • Oscar Mayora
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8850)

Abstract

Social interactions play an important role in the overall well-being. Current practice of monitoring social interactions through questionnaires and surveys is inadequate due to recall bias, memory dependence and high end-user effort. However, sensing capabilities of smart-phones can play a significant role in automatic detection of social interactions. In this paper, we describe our method of detecting interactions between people, specifically focusing on interactions that occur in synchrony, such as walking. Walking together between subjects is an important aspect of social activity and thus can be used to provide a better insight into social interaction patterns. For this work, we rely on sampling smartphone accelerometer and Wi-Fi sensors only. We analyse Wi-Fi and accelerometer data separately and combine them to detect walking in synchrony. The results show that from seven days of monitoring using seven subjects in real-life setting, we achieve 99% accuracy, 77.2% precision and 90.2% recall detection rates when combining both modalities.

Keywords

Social interactions Accelerometer Wi-fi Ambient intelligence Health and wellbeing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    James, S.H., Karl, R., Debra, U.: Social relationships and health. Science 241(4865), 540–545 (1988)CrossRefGoogle Scholar
  2. 2.
    Sheldon, C., Thomas, A.W.: Stress, social support, and the buffering hypothesis. Psychological Bulletin 98(2), 310–357 (1985)CrossRefGoogle Scholar
  3. 3.
    Isaac, V., Stewart, R., Artero, S., Ancelin, M.-L., Ritchie, K.: Social activity and improvement in depressive symptoms in older people: A prospective community cohort study. The American Journal of Geriatric Psychiatry 17(8), 688–696 (2009)CrossRefGoogle Scholar
  4. 4.
    Bosworth, H.B., Hays, J.C., George, L.K., Steffens, D.C.: Psychosocial and clinical predictors of unipolar depression outcome in older adults. International Journal of Geriatric Psychiatry 17(3), 238–246 (2002)CrossRefGoogle Scholar
  5. 5.
    Nathan Norfleet Eagle. Machine perception and learning of complex social systems. PhD thesis, MASSACHUSETTS INSTITUTE OF TECHNOLOGY (2005)Google Scholar
  6. 6.
    Matthews, M., Abdullah, S., Gay, G., Choudhury, T.: Tracking mental well-being: Balancing rich sensing and patient needs. Computer 47(4), 36–43 (2014)CrossRefGoogle Scholar
  7. 7.
    Edmond, M., David, M., Noel, E.O.: Classification of sporting activities using smartphone accelerometers. Sensors 13(4), 5317–5337 (2013)CrossRefGoogle Scholar
  8. 8.
    Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Communications Surveys Tutorials 15(3), 1192–1209 (2013)CrossRefGoogle Scholar
  9. 9.
    Hayley, H., Gwenn, E., Jeroen, K.: Classifying social actions with a single accelerometer. In: Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2013, pp. 207–210. ACM, New York (2013)Google Scholar
  10. 10.
    Aparicio, S., Perez, J., Bernardos, AM., Casar, J.R.: A fusion method based on bluetooth and wlan technologies for indoor location. In: Multisensor Fusion and Integration for Intelligent Systems, MFI 2008, pp. 487–491 (August 2008)Google Scholar
  11. 11.
    Carlos E.G., José C.C., Ramon F.B.: Bluetooth-wifi based combined positioning algorithm, implementation and experimental evaluation. Procedia Technology 7, 37–45 (2013), 3rd Iberoamerican Conference on Electronics Engineering and Computer Science, CIIECC 2013Google Scholar
  12. 12.
    Jaewoo, C., Matt, D., Chris, S., Ig-Jae, K., Pedram, R., Micaela, W.: Indoor location sensing using geo-magnetism. In: Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services, MobiSys 2011, pp. 141–154. ACM, New York (2011)Google Scholar
  13. 13.
    Carlos, E.G., José, C.C. Ramon, B.: Location identification using a magnetic-field-based FFT signature. Procedia Computer Science 19, 533–539 (2013), The 4th International Conference on Ambient Systems, Networks and Technologies (ANT 2013), the 3rd International Conference on Sustainable Energy Information Technology (SEIT 2013)Google Scholar
  14. 14.
    Alessandro, C., Matteo, P., Carlo, B., Fabio, L., Massimo, V.: Proximity classification for mobile devices using wi-fi environment similarity. In: Proceedings of the first ACM International Workshop on Mobile Entity Localization and Tracking in GPS-less Environments, pp. 43–48. ACM (2008)Google Scholar
  15. 15.
    Rahman, O.O., Anmol, M., Alex, P., Inas, K.: Identifying close friendships in a sensed social network. Procedia - Social and Behavioral Sciences 79(0), 18–26 (2013), 9th Conference on Applications of Social Network Analysis (ASNA)Google Scholar
  16. 16.
    Zhiwen, Y., Zhou, X., Zhang, D., Schiele, G., Becker, C.: Understanding social relationship evolution by using real-world sensing data. World Wide Web 16(5–6), 749–762 (2013)Google Scholar
  17. 17.
    Kristina, L., Suradej, I., Jeon-Hyung, K., Rumi, G.: Using proximity to predict activity in social networks. In: Proceedings of the 21st International Conference Companion on World Wide Web, WWW 2012 Companion, pp. 555–556. ACM, New York (2012)Google Scholar
  18. 18.
    Matic, A., Osmani, V., Mayora, O.: Trade-offs in monitoring social interactions. IEEE Communications Magazine 51(7), 114–121 (2013)CrossRefGoogle Scholar
  19. 19.
    Matic, A., Osmani, V., Mayora, O.: Speech activity detection using accelerometer. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2112–2115 (August 2012)Google Scholar
  20. 20.
    Matic, A., Osmani, V., Mayora-Ibarra, O.: Analysis of social interactions through mobile phones. Mobile Networks and Applications 17(6), 808–819 (2012)CrossRefGoogle Scholar
  21. 21.
    Krumm, J., Horvitz, E.: LOCADIO: inferring motion and location from wi-fi signal strengths. In: The First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, MOBIQUITOUS 2004, pp. 4–13 (August 2004)Google Scholar
  22. 22.
    Welbourne, E., Lester, J., LaMarca, A., Borriello, G.: Mobile context inference using low-cost sensors. In: Strang, T., Linnhoff-Popien, C. (eds.) LoCA 2005. LNCS, vol. 3479, pp. 254–263. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Nathan, E., Alex(Sandy), P.: Reality mining: Sensing complex social systems. Personal Ubiquitous Comput. 10(4), 255–268 (2006)CrossRefGoogle Scholar
  24. 24.
    Vu, L., Do, Q., Nahrstedt, K.: Jyotish: A novel framework for constructing predictive model of people movement from joint wifi/bluetooth trace, pp. 54–62 (March 2011)Google Scholar
  25. 25.
    Sekara, V., Lehmann, S.: The strength of friendship ties in proximity sensor data. PLoS ONE 9(7), 1–8 (2014)CrossRefGoogle Scholar
  26. 26.
    Carreras, I., Matic, A., Saar, P., Osmani, V.: Comm2sense: Detecting proximity through smartphones. In: 2012 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 253–258 (March 2012)Google Scholar
  27. 27.
    Yang, Y., Chawla, N.V., Basu, P., Prabhala, B., La Porta, T.: Link prediction in human mobility networks. In: 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 380–387 (August 2013)Google Scholar
  28. 28.
    Eagle, N., Alex (Sandy), P., David, L.: Inferring friendship network structure by using mobile phone data. Proceedings of the National Academy of Sciences 106(36), 15274–15278 (2009)CrossRefGoogle Scholar
  29. 29.
    Long, V., Klara, N., Samuel, R., Indranil, G.: Joint bluetooth/wifi scanning framework for characterizing and leveraging people movement in university campus. In: Proceedings of the 13th ACM International Conference on Modeling, Analysis, and Simulation of Wireless and Mobile Systems, MSWIM 2010, pp. 257–265. ACM, New York (2010)Google Scholar
  30. 30.
    Carrasco-Jiménez, J.C., Celaya-Padilla, J.M., Montes, G., Brena, R.F., Iglesias, S.: Social interaction discovery: a simulated multiagent approach. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Rodríguez, J.S., di Baja, G.S. (eds.) MCPR 2012. LNCS, vol. 7914, pp. 294–303. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  31. 31.
    Stopczynski, A., Sekara, V., Sapiezynski, P., Cuttone, A., Mette, M.M., Jakob, E., Sune, L.: Measuring large-scale social networks with high resolution. PLoS ONE 9(4), 1–24 (2014)CrossRefGoogle Scholar
  32. 32.
    Jaccard, P.: Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. (1908)Google Scholar
  33. 33.
    Metz, C.E.: Basic principles of ROC analysis. Seminars in Nuclear Medicine 8(4), 283–298 (1978)CrossRefGoogle Scholar
  34. 34.
    Sing, T., Sander, O., Beerenwinkel, N., Lengauer, T.: ROCR: visualizing classifier performance in R. Bioinformatics 21(20), 3940–3941 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Enrique Garcia-Ceja
    • 1
    • 2
  • Venet Osmani
    • 1
    Email author
  • Alban Maxhuni
    • 1
  • Oscar Mayora
    • 1
  1. 1.CREATE-NETTrentoItalia
  2. 2.Tecnológico de Monterrey, Campus MonterreyMonterreyMéxico

Personalised recommendations