A Benchmarking Model for Sensors in Smart Environments

  • Andreas BraunEmail author
  • Reiner Wichert
  • Arjan Kuijper
  • Dieter W. Fellner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8850)


In smart environments, developers can choose from a large variety of sensors supporting their use case that have specific advantages or disadvantages. In this work we present a benchmarking model that allows estimating the utility of a sensor technology for a use case by calculating a single score, based on a weighting factor for applications and a set of sensor features. This set takes into account the complexity of smart environment systems that are comprised of multiple subsystems and applied in non-static environments. We show how the model can be used to find a suitable sensor for a use case and the inverse option to find suitable use cases for a given set of sensors. Additionally, extensions are presented that normalize differently rated systems and compensate for central tendency bias. The model is verified by estimating technology popularity using a frequency analysis of associated search terms in two scientific databases.


Benchmark Smart environments Modeling Sensor technology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Camp, R.C.: Benchmarking: the search for industry best practices that lead to superior performance. Quality Press, Milwaukee (1989)Google Scholar
  2. 2.
    Lewis, B.C., Crews, A.E.: The evolution of benchmarking as a computer performance evaluation technique. MIS Q, 7–16 (1985)Google Scholar
  3. 3.
    Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK benchmark: past, present and future. Concurr. Comput. Pract. Exp. 15, 803–820 (2003)CrossRefGoogle Scholar
  4. 4.
    Weicker, R.P.: Dhrystone: A synthetic systems programming benchmark. Commun. ACM 27, 1013–1030 (1984)CrossRefGoogle Scholar
  5. 5.
    Henning, J.L.: SPEC CPU2000: Measuring CPU performance in the new millennium. Computer (Long. Beach. Calif.) 33, 28–35 (2000)Google Scholar
  6. 6.
    Smith, J.E.: Characterizing computer performance with a single number. Commun. ACM 31, 1202–1206 (1988)CrossRefGoogle Scholar
  7. 7.
    Crolotte, A.: Issues in Benchmark Metric Selection. In: Nambiar, R., Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895, pp. 146–152. Springer, Heidelberg (2009)Google Scholar
  8. 8.
    Jain, R.: The art of computer systems performance analysis. John Wiley & Sons, Chichester (1991)Google Scholar
  9. 9.
    Ranganathan, A., Al-Muhtadi, J., Biehl, J., Ziebart, B., Campbell, R.H., Bailey, B.: Towards a pervasive computing benchmark. In: Proceedings PerCom, pp. 194–198 (2005)Google Scholar
  10. 10.
    Barsocchi, P., Chessa, S., Furfari, F., Potorti, F.: Evaluating Ambient Assisted Living Solutions: The Localization Competition. IEEE Pervasive Comput. 12, 72–79 (2013)CrossRefGoogle Scholar
  11. 11.
    Santos, R.M., de Oliveira, K.M., Andrade, R.M.C., Santos, I.S., Lima, E.R.: A Quality Model for Human-Computer Interaction Evaluation in Ubiquitous Systems. In: Collazos, C., Liborio, A., Rusu, C. (eds.) CLIHC 2013. LNCS, vol. 8278, pp. 63–70. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Jafari, S., Mtenzi, F., O’Driscoll, C., Fitzpatrick, R., O’Shea, B.: Measuring Privacy in Ubiquitous Computing Applications. Int. J. Digit. Soc. 2, 547–550 (2011)Google Scholar
  13. 13.
    Wilson, J.S.: Sensor technology handbook. Elsevier (2004)Google Scholar
  14. 14.
    Braun, A., Wichert, R., Kuijper, A., Fellner, D.W.: Capacitive proximity sensing in smart environments. J. Ambient Intell. Smart Environ. (in press)Google Scholar
  15. 15.
    Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull. 76, 378 (1971)CrossRefGoogle Scholar
  16. 16.
    Landsiedel, O., Wehrle, K., Götz, S.: Accurate prediction of power consumption in sensor networks. In: Proceedings Workshop on Embedded Networked Sensors (2005)Google Scholar
  17. 17.
    Bertozzi, M., Broggi, A.: GOLD: A parallel real-time stereo vision system for generic obstacle and lane detection. IEEE Trans. Image Process. 7, 62–81 (1998)CrossRefGoogle Scholar
  18. 18.
    Crawford, L.E., Huttenlocher, J., Engebretson, P.H.: Category effects on estimates of stimuli: Perception or reconstruction? Psychol. Sci. 11, 280–284 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andreas Braun
    • 1
    Email author
  • Reiner Wichert
    • 1
  • Arjan Kuijper
    • 1
    • 2
  • Dieter W. Fellner
    • 1
    • 2
  1. 1.Fraunhofer Institute for Computer Graphics Research IGDDarmstadtGermany
  2. 2.TU DarmstadtDarmstadtGermany

Personalised recommendations