SALT: Source-Agnostic Localization Technique Based on Context Data from Binary Sensor Networks

  • Filippo PalumboEmail author
  • Paolo Barsocchi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8850)


Localization is a key component for many AAL systems, since the user position can be used for detecting user’s activities and activating devices. While for outdoor scenarios Global Positioning System (GPS) constitutes a reliable and easily available technology, in indoor scenarios, in particular in real homes, GPS is largely unavailable. For this reason, several systems have been proposed for indoor localization. Recently, several algorithms fuse information coming from different sources in order to improve the overall accuracy in monitoring user activities. In this paper we propose a Source-Agnostic Localization Technique, called SALT, that fuses the information (coordinates) provided by a localization system with the information coming from the binary sensor network deployed within the environment. In order to evaluate the proposed framework, we tested our solution by using a previous developed heterogeneous localization systems presented at the international competition EvAAL 2013.


Indoor Localization Binary Sensor Network Sensor Fusion Ambient Assisted Living 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the EU Commission in the framework of the GiraffPlus FP7 project (Contract no. 288173).


  1. 1.
    Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system. ACM Transactions on Information Systems (TOIS) 10(1), 91–102 (1992)CrossRefGoogle Scholar
  2. 2.
    Abowd, G.D., Atkeson, C.G., Hong, J., Long, S., Kooper, R., Pinkerton, M.: Cyberguide: A mobile context-aware tour guide. Wireless Networks 3(5), 421–433 (1997)CrossRefGoogle Scholar
  3. 3.
    Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Developing a context-aware electronic tourist guide: some issues and experiences. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 17–24. ACM (2000)Google Scholar
  4. 4.
    Barsocchi, P., Chessa, S., Ferro, E., Furfari, F., Potorti, F.: Context driven enhancement of rss-based localization systems. In: 2011 IEEE Symposium on Computers and Communications (ISCC), pp. 463–468. IEEE (2011)Google Scholar
  5. 5.
    Coradeschi, S., Cesta, A., Cortellessa, G., Coraci, L., Gonzalez, J., Karlsson, L., Furfari, F., Loutfi, A., Orlandini, A., Palumbo, F., et al.: Giraffplus: Combining social interaction and long term monitoring for promoting independent living. In: 2013 The 6th International Conference on Human System Interaction (HSI), pp. 578–585. IEEE (2013)Google Scholar
  6. 6.
    Barsocchi, P., Chessa, S., Furfari, F., Potorti, F.: Evaluating ambient assisted living solutions: The localization competition. IEEE Pervasive Computing 12(4), 72–79 (2013)CrossRefGoogle Scholar
  7. 7.
    Salvi, D., Barsocchi, P., Arredondo, M.T., Ramos, J.P.L.: EvAAL, evaluating aal systems through competitive benchmarking, the experience of the 1st competition. In: Chessa, S., Knauth, S. (eds.) EvAAL 2011. CCIS, vol. 309, pp. 14–25. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Álvarez-García, J.A., Barsocchi, P., Chessa, S., Salvi, D.: Evaluation of localization and activity recognition systems for ambient assisted living: The experience of the 2012 evaal competition. Journal of Ambient Intelligence and Smart Environments 5(1), 119–132 (2013)Google Scholar
  9. 9.
    Ruiz, A.R.J., Granja, F.S., Prieto Honorato, J.C., Rosas, J.I.G.: Accurate pedestrian indoor navigation by tightly coupling foot-mounted imu and rfid measurements. IEEE Transactions on Instrumentation and Measurement 61(1), 178–189 (2012)CrossRefGoogle Scholar
  10. 10.
    Teixeira, T., Dublon, G., Savvides, A.: A survey of human-sensing: Methods for detecting presence, count, location, track, and identity. ACM Computing Surveys 5 (2010)Google Scholar
  11. 11.
    Nakamura, E.F., Loureiro, A.A., Frery, A.C.: Information fusion for wireless sensor networks: Methods, models, and classifications. ACM Computing Surveys (CSUR) 39(3), 9 (2007)CrossRefGoogle Scholar
  12. 12.
    Wymeersch, H., Lien, J., Win, M.Z.: Cooperative localization in wireless networks. Proceedings of the IEEE 97(2), 427–450 (2009)CrossRefGoogle Scholar
  13. 13.
    Castro, P., Chiu, P., Kremenek, T., Muntz, R.: A probabilistic room location service for wireless networked environments. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) Ubicomp 2001. LNCS, vol. 2201, pp. 18–34. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Wilson, D.H., Atkeson, C.G.: Simultaneous tracking and activity recognition (star) using many anonymous, binary sensors. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 62–79. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Ladd, A.M., Bekris, K.E., Rudys, A.P., Wallach, D.S., Kavraki, L.E.: On the feasibility of using wireless ethernet for indoor localization. IEEE Transactions on Robotics and Automation 20(3), 555–559 (2004)CrossRefGoogle Scholar
  16. 16.
    Joho, D., Plagemann, C., Burgard, W.: Modeling rfid signal strength and tag detection for localization and mapping. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 3160–3165. IEEE (2009)Google Scholar
  17. 17.
    Jia, S., Sheng, J., Takase, K.: Improvement of performance of localization id tag using multi-antenna rfid system. In: SICE Annual Conference, pp. 1715–1718. IEEE (2008)Google Scholar
  18. 18.
    Klingbeil, L., Wark, T.: A wireless sensor network for real-time indoor localisation and motion monitoring. In: International Conference on Information Processing in Sensor Networks, IPSN 2008, pp. 39–50. IEEE (2008)Google Scholar
  19. 19.
    Aarts, E., Wichert, R.: Ambient intelligence. Springer (2009)Google Scholar
  20. 20.
    Ding, D., Cooper, R.A., Pasquina, P.F., Fici-Pasquina, L.: Sensor technology for smart homes. Maturitas 69(2), 131–136 (2011)CrossRefGoogle Scholar
  21. 21.
    Palumbo, F., Ullberg, J., Štimec, A., Furfari, F., Karlsson, L., Coradeschi, S.: Sensor network infrastructure for a home care monitoring system. Sensors 14(3), 3833–3860 (2014)CrossRefGoogle Scholar
  22. 22.
    Gomez, J., Tayebi, A., Saez de Adana, F.M., Gutierrez, O.: Localization approach based on ray-tracing including the effect of human shadowing. Progress In Electromagnetics Research Letters 15, 1–11 (2010)CrossRefGoogle Scholar
  23. 23.
    Braun, A., Dutz, T.: AmbiTrack - marker-free indoor localization and tracking of multiple users in smart environments with a camera-based approach. In: Botía, J.A., Álvarez-García, J.A., Fujinami, K., Barsocchi, P., Riedel, T. (eds.) EvAAL 2013. CCIS, vol. 386, pp. 83–93. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  24. 24.
    Fet, N., Handte, M., Wagner, S., Marrón, P.J.: Enhancements to the locosmotion person tracking system. In: Botía, J.A., Álvarez-García, J.A., Fujinami, K., Barsocchi, P., Riedel, T. (eds.) EvAAL 2013. CCIS, vol. 386, pp. 72–82. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Salem, A., Canalda, P., Spies, F.: A gps/wi-fi/marker analysis based simultaneous and hierarchical multi-positioning system. In: Botía, J.A., Álvarez-García, J.A., Fujinami, K., Barsocchi, P., Riedel, T. (eds.) EvAAL 2013. CCIS, vol. 386, pp. 106–116. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  26. 26.
    Quintas, J., Cunha, A., Serra, P., Pereira, A., Marques, B., Dias, J.: Indoor localization and tracking using 802.11 networks and smartphones. In: Botía, J.A., Álvarez-García, J.A., Fujinami, K., Barsocchi, P., Riedel, T. (eds.) EvAAL 2013. CCIS, vol. 386, pp. 117–127. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Pirkl, G., Lukowicz, P.: Indoor localization based on resonant oscillating magnetic fields for aal applications. In: Botía, J.A., Álvarez-García, J.A., Fujinami, K., Barsocchi, P., Riedel, T. (eds.) EvAAL 2013. CCIS, vol. 386, pp. 128–140. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  28. 28.
    Moschevikin, A., Galov, A., Soloviev, A., Mikov, A., Volkov, A., Reginya, S.: Realtrac technology overview. In: Botía, J.A., Álvarez-García, J.A., Fujinami, K., Barsocchi, P., Riedel, T. (eds.) EvAAL 2013. CCIS, vol. 386, pp. 60–71. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Information Science and Technologies InstituteNational Research Council of ItalyPisaItaly
  2. 2.Department of Computer ScienceUniversity of PisaPisaItaly

Personalised recommendations