Skip to main content

Nanoparticles-Based Delivery Systems in Plant Genetic Transformation

  • Chapter
Book cover Nanotechnologies in Food and Agriculture

Abstract

The production of transgenic plants is considered as a valuable tool in plant research and the technology is comprehensively useful in agricultural research. Gene transfer in plants is generally carried out by Agrobacterium sp., application of some chemicals, and physical techniques (electroporation, microprojectile, etc.). Now-a-days with better efficacy and stability, new methods for the gene transfer in plants are coming up. The advent of nanotechnology, the nanoparticles-based delivery systems for genetic transformation of plants, is coming in a big way.

In this chapter, we have discussed the novel nanotechnologies like nucleic acid-conjugated nanoparticles with their current status and future prospects in the development of gene transfer methods in plants. We have also highlighted the shortcomings of conventional techniques of gene transfer in plants and discussed the role of established nanotechnology and chemical-based strategy for surface modification of nanoparticles to improve efficacy, stability, and accuracy making it less time-consuming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Senapati S, Khan M, Kumar R, Ramani R, Srinivas V, Sastry M (2003a) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824

    CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan M, Kumar R, Ramani R, Srinivas V, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553

    CAS  Google Scholar 

  • Akhter S, Ahmad M, Singh A, Ahmad I, Rahman M, Anwar M, Jain G, Ahmad F, Khar R (2011) Cancer targeted metallic nanoparticle: targeting overview, recent advancement and toxicity concern. Curr Pharm Des 17:1834–1850

    CAS  Google Scholar 

  • Asad S, Mukhtar Z, Nazir F, Hashmi JA, Mansoor S, Zafar Y, Arshad M (2008) Silicon carbide whisker-mediated embryogenic callus transformation of cotton (Gossypium hirsutum L.) and regeneration of salt tolerant plants. Mol Biotechnol 40:161–169

    CAS  Google Scholar 

  • Ball P (2002) Natural strategies for the molecular engineer. Nanotechnology 13:15–28

    Google Scholar 

  • Bansod S, Bonde S, Tiwari V, Bawaskar M, Deshmukh S, Gaikwad S, Gade A, Rai M (2013) Bioconjugation of gold and silver nanoparticles synthesized by Fusarium oxysporum and their use in rapid identification of Candida species by using bioconjugate-nano-PCR. J Biomed Nanotechnol 9:1962–1971

    CAS  Google Scholar 

  • Baron C, Domke N, Beinhofer M, Hapfelmeier S (2001) Elevated temperature differentially affects virulence, VirB protein accumulation, and T-pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains. J Bacteriol 183:6852–6861

    CAS  Google Scholar 

  • Bastus N, Sanchez-Tillo E, Pujals S, Farrera C, Lopez C, Giralt E, Celada A, Lloberas J, Puntes V (2009) Homogeneous conjugation of peptides onto gold nanoparticles enhances macrophage response. ACS Nano 3:1335–1344

    CAS  Google Scholar 

  • Bawaskar M, Gaikwad S, Ingle A, Rathod D, Gade A, Duran N, Marcato P, Rai M (2010) A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum. Curr Nanosci 6:376–380

    CAS  Google Scholar 

  • Berestovsky G, Ternovsky V, Kataev A (2001) Through pore diameter in the cell wall of Chara corallina. J Exp Bot 52:1173–1177

    CAS  Google Scholar 

  • Bhojwani S, Razdan M (1996) Plant tissue culture: theory and practice, 5th edn. Elsevier Science, Amsterdam, pp 112–151

    Google Scholar 

  • Birla S, Tiwari V, Gade A, Ingle A, Yadav A, Rai M (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    CAS  Google Scholar 

  • Birla S, Gaikwad S, Gade A, Rai M (2013) Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Sci World J 13:12, Article ID 796018

    Google Scholar 

  • Bo Andersen J, Sternberg C, Poulsen L, Bjorn S, Givskov M, Molin S (1998) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240–2246

    Google Scholar 

  • Bolik M, Koop H (1991) Identification of embryogenic microspores of barley (Hordeum vulgare) by individual selection and culture and their potential for transformation by microinjection. Protoplasma 162:61–68

    Google Scholar 

  • Bonde S, Rathod D, Ingle A, Ade R, Gade A, Rai M (2012) Murraya koenigii mediated synthesis of silver nanoparticles and its activity against three human pathogenic bacteria. Nanosci Meth 1:25–36

    CAS  Google Scholar 

  • Brunner T, Wick P, Manser P, Spohn P, Grass R, Limbach L, Bruinink A, Stark W (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and effect of particle solubility. Environ Sci Technol 40:4374–4381

    CAS  Google Scholar 

  • Cai W, Shin D, Chen K, Gheysens O, Cao Q, Wang S, Gambhir S, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nanoletters 6:669–676

    CAS  Google Scholar 

  • Casas A, Kononowicz A, Bressan R, Hasegawa P (1995) Cereal transformation through particle bombardment. Plant Breed Rev 13:235–264

    CAS  Google Scholar 

  • Cha T, Chen C, Yee W, Aziz A, Loh S (2011) Cinnamic acid, coumarin and vanillin: alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp. J Microbiol Methods 84:430–434

    CAS  Google Scholar 

  • Chalfie M, Kain S (1998) Green fluorescent protein on the web. In: Chalfie M, Kain S (eds) Green fluorescent protein: properties applications and protocols. Wiley-Liss, New York

    Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher D (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    CAS  Google Scholar 

  • Chen F, Gerion D (2004) Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for longterm, nontoxic imaging and nuclear targeting in living cells. Nanoletters 4:1827–1832

    CAS  Google Scholar 

  • Chen Z, Liang K, Qiu R, Luo L (2011) Ultrasound- and liposome microbubble-mediated targeted gene transfer to cardiomyocytes in vivo accompanied by polyethylenimine. Ultrasound Med 30:1247–1258

    Google Scholar 

  • Chowrira G, Akella V, Fuerst P, Lurquin P (1996) Transgenic grain legumes obtained by in planta electroporation-mediated gene transfer. Mol Biotechnol 5:85–96

    CAS  Google Scholar 

  • Cui J, Cui H, Wang Y, Sun C, Li K, Ren H, Du W (2012) Application of PEI-modified magnetic nanoparticles as gene transfer vector for the genetic modification of animals. Adv Mater Sci Eng 2012:1–6

    Google Scholar 

  • Da Silva L, Oliva M, Azevedo A, De Araujo J (2006) Responses of resting plant species to pollution from an iron pelletization factory. Water Air Soil Pollut 175:241–256

    Google Scholar 

  • Dafny-Yelin M, Levy A, Tzfira T (2008) The ongoing saga of Agrobacterium-host interactions. Trends Plant Sci 13:102–105

    CAS  Google Scholar 

  • Dameron C, Reese R, Mehra R, Kortan A, Carroll P, Steigerwald M, Brus L, Winge D (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Lett Nat 338:596–597

    CAS  Google Scholar 

  • Dar M, Ingle A, Rai M (2013) Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. Evaluated singly and in combination with antibiotics. Nanomed Nanotechnol Biol Med 9:105–110

    CAS  Google Scholar 

  • Datta S, Datta K, Soltanifar N, Donn G, Potrykus I (1992) Herbicide-resistant Indica rice plants from IRRI breeding line IR72 after PEG-mediated transformation of protoplasts. Plant Mol Biol 20:619–629

    CAS  Google Scholar 

  • De Rosa G, La Rotonda M (2009) Nano and microtechnologies for the delivery of oligonucleotides with gene silencing properties. Molecules 29:2801–2823

    Google Scholar 

  • Deng X, Wei Z, AN H (2001) Transgenic peanut plants obtained by particle bombardment via somatic embryogenesis regeneration system. Cell Res 11:156–160

    CAS  Google Scholar 

  • Deshayes A, Herrera-Estrella L, Caboche M (1985) Liposome-mediated transformation of tobacco mesophyll protoplasts by an Escherichia coli plasmid. EMBO J 4:2731–2737

    CAS  Google Scholar 

  • Deshmukh S, Deshmukh S, Gade A, Rai M (2012) Pseudomonas aeruginosa mediated synthesis of silver nanoparticles having significant antimycotic potential against plant pathogenic fungi. J Bionanosci 6:90–94

    CAS  Google Scholar 

  • Dhandayuthapani S, Via L, Thomas C, Horowitz P, Deretic D (1995) Green fluorescent protein as a marker for gene expression and cell biology of mycobacterial interactions with macrophages. Mol Microbiol 17:901–912

    CAS  Google Scholar 

  • Dhuldhaj UP, Deshmukh SD, Gade AK, Yashpal M, Rai MK (2012) Tagetes erecta mediated phytosynthesis of silver nanoparticles: an ecofriendly approach. Nusantara Biosci 4(3):109–112

    Google Scholar 

  • Dillen W, De Clercq J, Kapila J, Zambre M, Montagu M (1997) The effect of temperature on Agrobacterium tumefaciens-mediated gene transfer to plants. Plant J 12:1459–1463

    CAS  Google Scholar 

  • Dodds J, Roberts L (1990) Experiment in plant tissue culture, 2nd edn. International Potato Centre, Lima, pp 104–119

    Google Scholar 

  • Doi N, Yanagawa H (1999) Design of generic biosensors based on green fluorescent protein with allosteric sites by directed evolution. FEBS Lett 453:305–307

    CAS  Google Scholar 

  • Duchesne C, Charest J (1991) Transient expression of β-glucuronidase gene of embryogenic callus of Picea mariana. Plant Cell Rep 10:191–194

    CAS  Google Scholar 

  • Eichert T, Kurtz A, Steiner U, Goldbach H (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134:151–160

    CAS  Google Scholar 

  • Fernandez V, Eichert T (2009) Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. Crit Rev Plant Sci 28:36–68

    CAS  Google Scholar 

  • Fleischer M, O’Neill R, Ehwald (1999) The pore size of non-graminaceous plant cell wall is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121:829–838

    CAS  Google Scholar 

  • Francis M, Carrico I (2010) New frontier in protein bioconjugation. Chem Biol 14:771–773

    CAS  Google Scholar 

  • Fukumori Y, Ichikawa H (2006) Nanoparticles for cancer therapy and diagnosis. Adv Powder Technol 17:1–28

    CAS  Google Scholar 

  • Gade A, Bonde P, Ingle A, Marcato P, Duran N, Rai M (2008) Exploitation of Aspergillus niger for fabrication of silver nanoparticles. J Biobased Mater Bioenergy 2(3):243–247

    Google Scholar 

  • Gade A, Gaikwad S, Tiwari V, Yadav A, Ingle A, Rai M (2010a) Biofabrication of silver nanoparticles by Opuntia ficus-indica: in vitro antibacterial activity and study of mechanism involved in synthesis. Curr Nanosci 6:370–375

    CAS  Google Scholar 

  • Gade A, Ingle A, Whiteley C, Rai M (2010b) Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 32(5):593–600

    CAS  Google Scholar 

  • Gade A, Rai M, Kulkarni S (2011) Phoma sorghina, a phytopathogen mediated synthesis of unique silver rods. Int J Green Nanotechnol 3(3):153–159

    CAS  Google Scholar 

  • Gade A, Gaikwad S, Duran N, Rai M (2013) Screening of different species of Phoma for the synthesis of silver nanoparticles. Biotechnol Appl Biochem 60(5):482–493

    CAS  Google Scholar 

  • Gade A, Gaikwad S, Duran N, Rai M (2014) Green synthesis of silver nanoparticles by Phoma glomerata. Micron 59:52–59

    CAS  Google Scholar 

  • Gaertig J, Thatcher T, Gu L, Gorovsky M (1994) Electroporation mediated replacement of a positively and negatively selectable beta-tubulin gene in Tetrahymena thermophila. Proc Natl Acad Sci U S A 91:4549–4553

    CAS  Google Scholar 

  • Gaikwad S, Birla S, Ingle A, Gade A, Marcato P, Rai M, Duran N (2013a) Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. J Brazil Chem Soc 24(12):1974–1982

    CAS  Google Scholar 

  • Gaikwad S, Ingle A, Gade A, Rai M, Falanaga A, Incoronato N, Galdiero S, Galdiero M (2013b) Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomedicine 8:4303–4314

    Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Ade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol Biol Med 5:382–386

    CAS  Google Scholar 

  • Garanger E, Aikawa E, Reynolds F, Weissleder R, Josephson L (2008) Simplified syntheses of complex multifunctional nanomaterials. Chem Commun 4792–4794

    Google Scholar 

  • Gardea-Torresdey J, Parsons J, Gomez E, Peralta J, Troiani H, Santiago P (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2:397–401

    CAS  Google Scholar 

  • Gardea-Torresdey J, Gomez E, Peralta J, Parsons J, Troiani H, Jose Y (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361

    CAS  Google Scholar 

  • Ghadiali J, Stevens M (2008) Enzyme-responsive nanoparticle systems. Adv Mater 20:1–5

    Google Scholar 

  • Ghule K, Ghule A, Liu J, Ling Y (2006) Microscale size triangular gold prisms synthesized using Bengal gram beans (Cicer arietinum L.) extract and HAuCl4⋅3H2O: a green biogenic approach. J Nanosci Nanotechnol 6:3746–3751

    CAS  Google Scholar 

  • Godoy-hernández G, Avilés-berzunza E, Carrillo-pech M, Vásquez-flota F (2008) Agrobacterium-mediated transient transformation of Mexican prickly poppy (Argemone mexicana L.). Electron J Biotechnol 11:1–5

    Google Scholar 

  • Gupta A, Bonde S, Gaikwad S, Ingle A, Gade A, Rai M (2013) Lawsonia inermis-mediated synthesis of silver nanoparticles: activity against human pathogenic fungi and bacteria with special reference to formulation of an antimicrobial nanogel. IET Nanobiotechnol 8:172–178. doi:10.1049/iet-nbt.2013.0015

    Google Scholar 

  • Hayashimoto A, Li Z, Murai N (1990) Polyethylene glycol-mediated protoplast transformation system for production of fertile transgenic rice plants. Plant Physiol 93:857–863

    CAS  Google Scholar 

  • He X, Wang K, Tan W, Liu B, Lin X, He C, Li D, Huang S, Li J (2003) Bioconjugated nanoparticles for DNA protection from cleavage. J Am Chem Soc 125:7168–7169

    CAS  Google Scholar 

  • Hermanson G (2008) Bioconjugate techniques, 2nd edn. Academic Press is an imprint of Elsevier, London/Amsterdam

    Google Scholar 

  • Hoffmann-Tsay S, Ernst R, Hoffmann F (1994) Design, synthesis and application of surface-active chemicals for the promotion of electrofusion of plant protoplasts. Bioelectrochem Bioenerg 34:115–122

    CAS  Google Scholar 

  • Holmberg N, Bülow L (1998) Improving stress tolerance in plants by gene transfer. Trends Plant Sci 3:61–66

    Google Scholar 

  • Hoshino A, Fujioka K, Oku T, Suga M, Sasaki Y, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nanoletters 4:2163–2169

    CAS  Google Scholar 

  • Husaini A, Abdin M (2008) Development of transgenic strawberry (Fragaria x ananassa Duch.) plants tolerant to salt stress. Plant Sci 174:446–455

    CAS  Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–2245

    CAS  Google Scholar 

  • Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    CAS  Google Scholar 

  • Ingram R, Hostetler M, Murray R (1997) Poly-hetero-u-functionalized alkanethiolate stabilized gold cluster compounds. J Am Chem Soc 119:9175–9178

    CAS  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    CAS  Google Scholar 

  • Jana N, Earhart C, Ying J (2007) Synthesis of water-soluble and functionalized nanoparticles by silica coating. Chem Mater 19:5074–5082

    CAS  Google Scholar 

  • Jason T, Koropatnick J, Berg R (2004) Toxicology of antisense therapeutics. Toxicol Appl Pharmacol 201:66–83

    CAS  Google Scholar 

  • Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Xinbiao G (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383

    CAS  Google Scholar 

  • Jiang Z, Berg H (1995) Increase of protoplast electrofusion supported by dextran fractions. Bioelectrochem Bioenerg 38:383–387

    CAS  Google Scholar 

  • Josephson L, Tung C, Moore A, Weissleder R (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjugate Chem 10:186–191

    CAS  Google Scholar 

  • Josephson L, Perez J, Weissleder R (2001) Magnetic nanosensors for the detection of oligonucleotide sequences. Angewandte Chemie 113(17):3304–3306

    Google Scholar 

  • Jun L, Xuan-Ming L, Su-Yao X, Chuen-Yi T, Dong-Ying T, Xuanming L (2008) Preparation of fluorescence starch-nanoparticle and its application as plant transgenic vehicle. J Cent South Univ Technol 15:768–773

    Google Scholar 

  • Kakkar A, Verma V (2011) Agrobacterium mediated biotransformation. J Appl Pharm Sci 01:29–35

    Google Scholar 

  • Kalia J, Raines R (2010) Advances in bioconjugation. Curr Org Chem 14:138–147

    CAS  Google Scholar 

  • Kenel F, Eady C, Brinch S (2010) Efficient Agrobacterium tumefaciens mediated transformation and regeneration of garlic (Allium sativum) immature leaf tissue. Plant Cell Rep 29:223–230

    CAS  Google Scholar 

  • Kim Y, Oh Y, Oh E, Ko S, Han M, Kim H (2008) Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface. Anal Chem 80:4634–4641

    CAS  Google Scholar 

  • Kishinami I, Widholm J (1987) Auxotrophic complementation in intergeneric hybrid cells obtained by electrical and dextran-induced protoplast fusion. Plant Cell Physiol 28:211–218

    CAS  Google Scholar 

  • Klee H, Horsch R, Rogers S (1987) Agrobacterium-mediated plant transformation and its further applications to plant biology. Annu Rev Plant Physiol 38:467–486

    CAS  Google Scholar 

  • Klein T, Kornstein L, Stanford J, Fromm M (1989) Genetic transformation of maize cells by particle bombardment. Plant Physiol 91:440–444

    CAS  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni S, Paknikar K (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    CAS  Google Scholar 

  • Kumar R, Priyadharsani K, Thamaraiselvi K (2012) Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamarii. J Nanopart Res 14:860

    Google Scholar 

  • Lacroix B, Kozlovsky S, Citovsky V (2008) Recent patents on Agrobacterium-mediated gene and protein transfer, for research and biotechnology. Recent Pat DNA Gene Seq 2:69–81

    CAS  Google Scholar 

  • Lagerholm B, Wang M, Ernst L, Ly D, Liu H, Bruchez M, And Waggoner A (2004) Multicolor coding of cells with cationic peptide coated quantum dots. Nanoletters 4:2019–2022

    CAS  Google Scholar 

  • Lee G, Bignell L, Romeo T, Razal J, Shepherd R, Chen J, Minett A, Innisa P, Wallace G (2010) The citrate mediated shape evolution of transforming photomorphic silver nanoparticles. Chem Commun 46:7807–7809

    CAS  Google Scholar 

  • Levy R, Thanh N, Doty R, Hussain I, Nichols R, Schiffrin D, Brust M, Fernig D (2004) Rational and combinatorial design of peptide capping ligands for gold nanoparticles. J Am Chem Soc 126:10,076–10,084

    CAS  Google Scholar 

  • Li C, Guo T, Zhou D, Hu Y, Zhou H, Wang S, Chen J, Zhang Z (2011) A novel glutathione modified chitosan conjugate for efficient gene delivery. J Control Release 154:177–188

    CAS  Google Scholar 

  • Liu J, Wang F, Wang L, Xiao S, Tong C, Tang D, Liu X (2008) Preparation of fluorescence starch-nanoparticle and its application as plant transgenic vehicle. J Cent South Univ Technol 15:768–773

    CAS  Google Scholar 

  • Lopeza M, Parsonsb J, Peralta V, Gardea T (2005) An XAS study of the binding and reduction of Au (III) by hop biomass. Microchem J 81:50–56

    Google Scholar 

  • Lurquin P (1997) Gene transfer by electroporation. Mol Biotechnol 7:5–35

    CAS  Google Scholar 

  • Madhavaraj L, Sethumadhavan V, Geun H, Mathur N, Si W (2013) Synthesis, characterization and evaluation of antimicrobial efficacy of silver nanoparticles using Paederia foetida L. leaf extract. Int Res J Bio Sci 2:28–34

    Google Scholar 

  • Mandle D, Bolander M, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Google Scholar 

  • Masala O, Seshadri R (2004) Synthesis routes for large volumes of nanoparticles. Annu Rev Mater Res 34:41–81

    CAS  Google Scholar 

  • McKnight T, Melechko A, Griffin G, Guillorn M, Merkulov V, Serna F, Hensley D, Doktycz M, Lowndes D, Simpson M (2003) Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology 14:551–556

    CAS  Google Scholar 

  • McKnight T, Melechko A, Hensley D, Mann D, Griffin G, Simpson M (2004) Tracking gene expression after DNA delivery using spatially indexed nanofiber arrays. Nano Lett 4:1213–1219

    CAS  Google Scholar 

  • Medintz I, Clapp A, Brunel F, Tiefenbrunn T, Uyeda H, Chang E, Deschamps J, Dawson P, Mattoussi H (2006) Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot–peptide conjugates. Nat Mater 5:581–589

    CAS  Google Scholar 

  • Mehier-Humbert S, Guy R (2005) Physical methods for gene transfer: improving the kinetics of gene delivery into cells. Adv Drug Deliv Rev 57:733–753

    CAS  Google Scholar 

  • Mohanpuria P, Rana N, Yadav S (2007) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 7:9275–9280

    Google Scholar 

  • Moore M (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment. Environ Int 32:967–976

    CAS  Google Scholar 

  • Mude N, Ingle A, Gade A, Rai M (2009) Synthesis of silver nanoparticles by the callus extract of Carica papaya: a first report. J Plant Biochem Biotechnol 18(285):83–86

    CAS  Google Scholar 

  • Murashige T (1974) Plant propagation through tissue cultures. Annu Rev Plant Physio 25:135–166

    CAS  Google Scholar 

  • Murray C, Kagan C, Bawendi M (2004) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610

    Google Scholar 

  • Nativo P, Prior I, Brust M (2008) Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2:1639–1644

    CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann N, Filser J, Miao A, Quigg A, Santschi P, Sigg L (2008) Environmental behaviour and ecotoxicity of engineered nanoparticles to algae, plants and fungi. Ecotoxicology 17:372–386

    CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    CAS  Google Scholar 

  • Neuhaus G, Spangerberg G (1990) Plant transformation by microinjection techniques. Physiol Plant 79:213–217

    CAS  Google Scholar 

  • Neuhaus G, Spangenberg G, Mittelsten Scheid O, Schweiger H (1987) Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids. TAG Theor Appl Genet 75:30–36

    Google Scholar 

  • Neumann E, Schaefer R, Wang Y, Hofschneider P (1982) Gene transfer into mouse myeloma cells by electroporation in high electric fields. EMBO J 1:841–845

    CAS  Google Scholar 

  • Niedenthal R, Riles L, Johnston M, Hegemann J (1996) Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast 12:773–786

    CAS  Google Scholar 

  • Niemeyer C (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158

    CAS  Google Scholar 

  • Nowack B, Bucheli T (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22

    CAS  Google Scholar 

  • Nyffenegger R, Quellet C, Ricka J (1993) Synthesis of fluorescent monodisperse, colloidal silica particles. J Colloid Interface Sci 159(150):157

    Google Scholar 

  • Oard J (1991) Physical methods for the transformation of plant cells. Biotechnol Adv 19:1–11

    Google Scholar 

  • Ogi T, Saitoh N, Nomura T, Konishi Y (2010) Room-temperature synthesis of gold nanoparticles and nanoplates using Shewanella algae cell extract. J Nanopart Res 12:2531–2539

    CAS  Google Scholar 

  • Ohadi M, Alvari A, Mohammad A, Abdin M, Hejazi M (2011) In vitro propagation of C. intybus L. and quantification of enhanced secondary metabolite (esculin). Recent Pat Biotechnol 5:227–234

    Google Scholar 

  • Ohta S, Mita S, Hattori T, Nakamura K (1990) Construction and expression in tobacco of a beta-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol 31:805–813

    CAS  Google Scholar 

  • O'Neill C, Horváth G, Horváth É, Dix P, Medgyesy P (1993) Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. Plant J 3:729–738

    Google Scholar 

  • Patil S, Rhodes D, Burgess D (2005) Anionic liposomal delivery system for DNA transfection. AAPS J 7:E61–E77, Article 9

    CAS  Google Scholar 

  • Permiakova N, Shumnyi V, Deineko E (2009) Agrobacterium mediated transformation of plants: transfer of vector DNA fragments in the plant genome. Russ J Genet 45:305–317

    CAS  Google Scholar 

  • Pinaud F, King D, Moore H, Weiss S (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 126:6115–6123

    CAS  Google Scholar 

  • Potrykus I (1991) Gene transfer to plants: assessment of published approaches and results. Annu Rev Plant Phys 42:205–225

    CAS  Google Scholar 

  • Prasad K, Jha A, Kulkarni A (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2:248–250

    CAS  Google Scholar 

  • Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano Biomed Eng 3:174–178

    CAS  Google Scholar 

  • Rai M, Deshmukh S, Gade A, Kamel-Abd-Elsalam (2012) Strategic nanoparticle-mediated gene transfer in plants and animals – a novel approach. Curr Nanosci 8:170–179

    CAS  Google Scholar 

  • Rakoczy-trojanowska M (2002) Alternative methods of plant transformation – a short review. Cell Mol Biol Lett 7:849–858

    Google Scholar 

  • Reid W, Zhang Q, Sekimoto H (2002) Influence of membrane surface charge on nutrient uptake by plants. Dev Plant Soil Sci 92:198–199

    Google Scholar 

  • Roberto C, Ruffini C (2009) Nanoparticles and higher plants. Cryologia 62:161–165

    Google Scholar 

  • Robey R, Ruiz O, Santos A, Ma J, Kear F, Wang L, Li C, Bernardo A, Arruda J (1998) pH dependent fluorescence of a heterologously expressed Aequorea green fluorescent protein mutant: in situ spectral characteristics and applicability to intracellular pH estimation. Biochemistry 37:9894–9901

    CAS  Google Scholar 

  • Roco M (2003) Broader societal issue of nanotechnology. J Nanopart Res 5:181–189

    Google Scholar 

  • Rodriguez E, Parsons J, Peralta J, Cruz G, Romero J, Sanchez S (2007) Potential of Chilopsis linearis for gold phytomining: using XAS to determine gold reduction and nanoparticle formation within plant tissues. Int J Phytoremed 9:133–147

    CAS  Google Scholar 

  • Ruzin S, McCarthy S (1986) The effect of chemical facilitators on the frequency of electrofusion of tobacco mesophyll protoplast. Plant Cell Rep 5:342–345

    CAS  Google Scholar 

  • Rybicki E, von Wechmar M (1982) Enzyme-assisted immune detection of plant virus proteins electroblotted onto nitrocellulose paper. J Virol Methods 5:267–278

    CAS  Google Scholar 

  • Sable N, Gaikwad S, Bonde S, Gade A, Rai M (2012) Phytofabrication of silver nanoparticles by using aquatic plant Hydrilla verticilata. Nusantara Biosci 4(2):45–49

    Google Scholar 

  • Sailaja M, Tarakeswari M, Sujatha M (2008) Stable genetic transformation of castor (Ricinus communis L.) via particle gun-mediated gene transfer using embryo axes from mature seeds. Plant Cell Rep 27:1509–1519

    CAS  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Santos C, Mazzola P, Silva P, Cholewa O, Penna T (2007) Preliminary study on the potential utility of GFP as a biosensor for drug stability in parenteral solutions. Biotechnol Prog 23:979–984

    Google Scholar 

  • Schellenberger E, Reynolds F, Weissleder R, Josephson L (2004) Surface functionalized nanoparticle library yields probes for apoptotic cells. Chem Bio Chem 5:275–279

    CAS  Google Scholar 

  • Segura T, Shea L (2001) Materials for non viral gene delivery. Annu Rev Mater Res 31:25–46

    CAS  Google Scholar 

  • Seki M, Lida A, Morikawa H (1999) Transient expression of the beta-glucuronidase gene in tissues of Arabidopsis thaliana by bombardment-mediated transformation. Mol Biotechnol 11:251–255

    CAS  Google Scholar 

  • Shahverdi A, Minaeian S, Shahverdi H, Jamalifar H, Nohi A (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923

    CAS  Google Scholar 

  • Shestibratov, Konstantin Aleksandrovich (Puschino, RU), Dolgov, Sergey Vladimirovich (2007) Method for producing a transgenic plant with the aid of Agrobacterium tumefaciens. US Patent Application 20070124835

    Google Scholar 

  • Shirazi R, Ewert K, Leal C, Majzoub R, Bouxsein N, Safinya C (2011) Synthesis and characterization of degradable multivalent cationic lipids with disulfide-bond spacers for gene delivery. Biochim Biophys Acta 1808:2156–2166

    CAS  Google Scholar 

  • Shrawat A, Good A (2011) Agrobacterium tumefaciens-mediated genetic transformation of cereals using immature embryos. Methods Mol Biol 710:355–372

    CAS  Google Scholar 

  • Slocik J, Stone M, Naik R (2005) Synthesis of gold nanoparticles using multifunctional peptides. Small 1:1048–1052

    CAS  Google Scholar 

  • Sokolova V, Epple M (2008) Inorganic nanoparticles as a carrier for nucleic acid into cells. Angew Chem Int Ed 47:1382–1395

    CAS  Google Scholar 

  • Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    CAS  Google Scholar 

  • Stangeland B, Salehian Z (2002) An improved clearing method for GUS assay in arabidopsis endosperm and seeds. Plant Mol Biol Rep 20:107–114

    Google Scholar 

  • Stephanopoulos N, Francis M (2011) Choosing an effective protein bioconjugation strategy. Nat Chem Biol 7:876–884

    CAS  Google Scholar 

  • Stoger E, Williams S, Christou P, Down RE, Gatehouse JA (1999) Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Mol Breed 5:65–73

    CAS  Google Scholar 

  • Sudan C, Prakash S, Bhomkar P, JAIN S, Bhalla-sarin N (2006) Ubiquitous presence of β-glucuronidase (GUS) in plants and its regulation in some model plants. Planta 224:853–864

    CAS  Google Scholar 

  • Sun H, Uchi S, Watanabe S, Ezura H (2006) A highly efficient transformation protocol for micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol 47:426–431

    CAS  Google Scholar 

  • Susumu K, Uyeda H, Medintz I, Pons T, Delehanty J, Mattoussi H (2007) Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J Am Chem Soc 129:13,987–13,996

    CAS  Google Scholar 

  • Templeton A, Wuelfing W, Murray R (2000) Monolayer-protected cluster molecules. Acc Chem Res 33:27–36

    CAS  Google Scholar 

  • To K, Cheng M, Chen L, Chen S (1996) Introduction and expression of foreign DNA in isolated spinach chloroplasts by electroporation. Plant J 10:737–743

    CAS  Google Scholar 

  • Towbin H, Staehelin J, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. Procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    CAS  Google Scholar 

  • Tsien R (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    CAS  Google Scholar 

  • Tzfira T, Citovsky V (2003) The Agrobacterium-plant cell interaction. Taking biology lessons from a bug. Plant Physiol 133:943–947

    CAS  Google Scholar 

  • Uchida M, Natsume H, Kobayashi D, Sugibayashi K, Morimoto Y (2002) Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indomethacin after bombardment of indomethacin loaded poly-l-lactic acid microspheres using a helios gun system. Biol Pharm Bull 25:690–693

    CAS  Google Scholar 

  • Uchida M, Li X, Mertens P, Alpar H (2009) Transfection by particle bombardment: delivery of plasmid DNA into mammalian cells using gene gun. Biochim Biophys Acta 1790:754–764

    CAS  Google Scholar 

  • Uzu G, Sobanska S, Sarret G, Munoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric pollution. Environ Sci Technol 44:1036–1042

    CAS  Google Scholar 

  • Van B, Vrij A (1993) Synthesis and characterization of monodisperse colloidal organo-silica spheres. J Colloid Interface Sci 156:1–18

    Google Scholar 

  • Verhaegh N, Van B (1994) Dispersions of rhodamine-labeled silica spheres: synthesis, characterization, and fluorescence confocal scanning microscopy. Langmuir 10(1427):1438

    Google Scholar 

  • Verma P, Mathur A (2011) Agrobacterium tumefaciens-mediated transgenic plant production via direct shoot bud organogenesis from pre-plasmolyzed leaf explants of Catharanthus roseus. Biotechnol Lett 33:1053–1060

    CAS  Google Scholar 

  • Vieira A, Camilo C (2011) Agrobacterium tumefaciens-mediated transformation of the aquatic fungus Blastocladiella emersonii. Fungal Genet Biol 48:806–8011

    CAS  Google Scholar 

  • Vitha S, Beneš K, Phillips J, Gartland K (1995) Histochemical GUS analysis. In: Gartland KMA, Davey MR (eds) Agrobacterium protocols. Humana Press, Totowa, pp 185–193

    Google Scholar 

  • Wang Z, Lévy R, Fernig D, Brust M (2005) The peptide route to multifunctional gold nanoparticles. Bioconjugate Chem 16:497–500

    CAS  Google Scholar 

  • Wechuck J, Ozuer A, Goins W, Wolfe D, Oligino T, Glorioso J, Ataai M (2002) Effect of temperature, medium composition, and cell passage on production of herpes-based viral vectors. Biotechnol Bioeng 5:112–119

    Google Scholar 

  • Wiesman Z, Dom N, Sharvit E, Grinberg S, Linder C, Heldman E, Zaccai M (2007) Novel cationic vesicle platform derived from vernonia oil for efficient delivery of DNA through plant cuticle membranes. J Biotechnol 130:85–94

    CAS  Google Scholar 

  • Wilhelm C, Billotey C, Roger J, Pons J, Bacri J, Gazeau F (2003) Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24:1001–1011

    CAS  Google Scholar 

  • Wuister S, Swart I, Van Driel F, Hickey S, de Donega C (2003) Highly luminescent water-soluble CdTe quantum dots. Nanoletters 3:503–507. www.biotechnology4u.com. www.molecular-plant-biotechnology.info

  • Yang N, Burkholder J, Roberts B, Martinell B, McCabe D (1990) In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci U S A 87:9568–9572

    CAS  Google Scholar 

  • Yu Q, Huang H, Chen R (2012) Synthesis of CuO nanowalnuts and nanoribbons from aqueous solution and their catalytic and electrochemical properties. Nanoscale 4(8):2613–2620

    CAS  Google Scholar 

  • Zou W, Liu C, Chen Z, Zang N (2009) Preparation and characterization of cationic PLA-PEG nanoparticles for delivery of plasmid DNA. Nanoscale Res Lett 4:982–992

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Science and Technology (Nano Mission Project) and to the University Grants Commission, New Delhi, for providing financial assistance under the UGC-SAP program. MKR is thankful to FAPESP for the financial assistance to visit the Institute of Chemistry, State University of Campinas, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rai, M. et al. (2015). Nanoparticles-Based Delivery Systems in Plant Genetic Transformation. In: Rai, M., Ribeiro, C., Mattoso, L., Duran, N. (eds) Nanotechnologies in Food and Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-14024-7_10

Download citation

Publish with us

Policies and ethics