Skip to main content

Abstract

Erosive tooth wear is a two-stage process. In the first stage (erosion), acids derived mainly from dietary sources partially demineralise and soften tooth surfaces. In the second stage (wear), the weakened tooth surfaces are worn by intra-oral frictional forces. The microstructure, porosity and mineral solubility of enamel and dentin influence the histological patterns and relative rates of erosion. The erosive potential of acidic products seems to be determined largely by pH and buffering properties, although fluoride and calcium concentrations could also be important. Raised temperature and increased fluid movement accelerate erosion. Eroded surfaces are worn by toothbrushing, attrition and even abrasion by food or the soft tissues. Because the initial erosion affects all exposed tooth surfaces, the clinical appearance of erosive wear is unlike that of purely mechanical wear. Variations in behaviour, such as patterns of toothbrushing or the frequency of drinking erosive beverages, cause wide differences in the degree of erosion experienced by individuals. Saliva ameliorates erosion considerably, by dilution and neutralisation of acids and by formation of salivary pellicle which protects tooth surfaces against demineralisation. However, remineralisation seems to occur too slowly to reverse the erosion process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaidonis JA. Tooth wear: the view of the anthropologist. Clin Oral Invest. 2008;12(suppl):54–8.

    Google Scholar 

  2. Bartlett DW, Smith BGN. Definition, classification, and clinical assessment of attrition, erosion and abrasion of enamel and dentine. In: Addy M, Embery G, Edgar WM, Orchardson R, editors. Tooth wear and sensitivity. London: Martin Dunitz; 2000. p. 87–92.

    Google Scholar 

  3. Johansson AK, Omar R, Carlsson GE, Johansson A. Dental erosion and its growing importance in clinical practice: from past to present. Int J Dent. 2012; Article ID 632907:17.

    Google Scholar 

  4. Shellis RP. Transport processes in enamel and dentine. In: Addy M, Embery G, Edgar WM, Orchardson R, editors. Tooth wear and sensitivity. London: Martin Dunitz; 2000. p. 19–27.

    Google Scholar 

  5. Verbeeck RMH. Minerals in human enamel and dentine. In: Driessens FCM, Wöltgens JHM, editors. Tooth development and caries. Boca Raton: CRC Press; 1986. p. 95–152.

    Google Scholar 

  6. Shellis RP, Featherstone JDB, Lussi A. Understanding the chemistry of dental erosion. In: Lussi A, editor. Dental erosion (Monogr Oral Sci 20). 2nd ed. Basel: Karger; 2014.

    Google Scholar 

  7. Lussi A, Megert B, Shellis RP, Wang X. Analysis of the erosive effect of different dietary substances and medications. Brit J Nutr. 2012;30:1–11.

    Google Scholar 

  8. Stumm W. Chemistry of the solid-water interface. New York: Wiley; 1992.

    Google Scholar 

  9. Lussi A, Schlueter N, Rakhmatullina E, Ganss C. Dental erosion – an overview with emphasis on chemical and histopathological aspects. Caries Res. 2011;45 Suppl 1:2–12.

    Article  PubMed  Google Scholar 

  10. Millward A, Shaw L, Harrington E, Smith AJ. Continuous monitoring of salivary flow rate and pH at the surface of the dentition following consumption of acidic beverages. Caries Res. 1997;31:44–9.

    Article  PubMed  Google Scholar 

  11. Shellis RP, Barbour ME, Jones SB, Addy M. Effects of pH and acid concentration on erosive dissolution of enamel, dentine and compressed hydroxyapatite. Eur J Oral Sci. 2010;118:475–82.

    Article  PubMed  Google Scholar 

  12. Ganss C, Schlueter N, Hardt M, von Hinckeldey J, Klimek J. Effects of toothbrushing on eroded dentine. Eur J Oral Sci. 2007;115:390–6.

    Article  PubMed  Google Scholar 

  13. West NX, Davies M, Amaechi BT. In vitro and in situ erosion models for evaluating tooth substance loss. Caries Res. 2011;45 Suppl 1:43–52.

    Article  PubMed  Google Scholar 

  14. Jensdottir T, Nauntofte B, Buchwald C, Bardow A. Effects of sucking acidic candy on whole-mouth saliva composition. Caries Res. 2005;39:468–74.

    Article  PubMed  Google Scholar 

  15. Mahoney E, Beattie J, Swain M, Kilpatrick N. Preliminary in vitro assessment of erosive potential using the ultra-micro-indentation system. Caries Res. 2003;37:218–24.

    Article  PubMed  Google Scholar 

  16. Lussi A, Jäggi T, Schärer S. The influence of different factors on in vitro enamel erosion. Caries Res. 1993;27:387–93.

    Article  PubMed  Google Scholar 

  17. Lussi A, Jaeggi T, Jaeggi-Schärer S. Prediction of the erosive potential of some beverages. Caries Res. 1995;29:349–54.

    Article  PubMed  Google Scholar 

  18. Barbour ME, Parker DM, Allen GC, Jandt KD. Enamel dissolution in citric acid as a function of calcium and phosphate concentrations and degree of saturation with respect to hydroxyapatite. Eur J Oral Sci. 2003;111:421–33.

    Google Scholar 

  19. Davis WB, Winter PJ. The effect of abrasion on enamel and dentine after exposure to dietary acid. Br Dent J. 1980;148:253–6.

    Article  PubMed  Google Scholar 

  20. Larsen MJ, Nyvad B. Enamel erosion by some soft drinks and orange juices relative to their pH, buffering effect and contents of calcium phosphate. Caries Res. 1999;33:81–7.

    Article  PubMed  Google Scholar 

  21. Shellis RP, Barbour ME, Jesani A, Lussi A. Effects of buffering properties and undissociated acid concentration on dissolution of dental enamel, in relation to pH and acid type. Caries Res. 2013;47:601–11.

    Article  PubMed  Google Scholar 

  22. Gray JA. Kinetics of enamel dissolution during formation of incipient caries-like lesions. Arch Oral Biol. 1961;11:397–421.

    Article  Google Scholar 

  23. Featherstone JDB, Rodgers BE. Effect of acetic, lactic and other organic acids on the formation of artificial carious lesions. Caries Res. 1981;15:377–85.

    Article  PubMed  Google Scholar 

  24. Wong L, Cutress TW, Duncan JF. The influence of incorporated and adsorbed fluoride on the dissolution of powdered and pelletized hydroxyapatite in fluoridated and non-fluoridated acid buffers. J Dent Res. 1987;66:1735–41.

    Article  PubMed  Google Scholar 

  25. Arends J, Christoffersen J. Nature and role of loosely bound fluoride in dental caries. J Dent Res. 1990;69:601–5.

    PubMed  Google Scholar 

  26. Hughes JA, West NX, Parker DM, Newcombe RG, Addy M. Development and evaluation of a low erosive blackcurrant juice drink in vitro and in situ 3. Final drink and concentrate, formulae comparisons in situ and overview of the concept. J Dent. 1999;27:345–50.

    Article  PubMed  Google Scholar 

  27. Amaechi BT, Higham SM, Edgar WM. Factors influencing the development of dental erosion in vitro: enamel type, temperature and exposure time. J Oral Rehabil. 1999;26:624–30.

    Article  PubMed  Google Scholar 

  28. Barbour ME, Finke M, Parker DM, Hughes JA, Allen GC, Addy M. The relationship between enamel softening and erosion caused by soft drinks at a range of temperatures. J Dent. 2006;34:207–13.

    Article  PubMed  Google Scholar 

  29. Shellis RP, Finke M, Eisenburger M, Parker DM, Addy M. Relationship between enamel erosion and flow rate. Eur J Oral Sci. 2005;113:232–8.

    Article  PubMed  Google Scholar 

  30. Wiegand A, Stock A, Attin R, Werner C, Attin T. Impact of the acid flow rate on dentin erosion. J Dent. 2007;35:21–7.

    Article  PubMed  Google Scholar 

  31. Järvinen VK, Rytömaa II, Heinonen OP. Risk factors in dental erosion. J Dent Res. 1991;70:942–7.

    Article  PubMed  Google Scholar 

  32. Sánchez GA, Fernandez De Preliasco MV. Salivary pH changes during soft drinks consumption in children. Int J Paediatr Dent. 2003;13:251–7.

    Article  PubMed  Google Scholar 

  33. Zwier N, Huysmans MCDNJM, Jager DHJ, Ruben J, Bronkhorst EM. Saliva parameters and erosive wear in adolescents. Caries Res. 2013;47:548–52.

    Article  PubMed  Google Scholar 

  34. Hannig M. Ultrastructural investigation of pellicle morphogenesis at two different intraoral sites during a 24-h period. Clin Oral Invest. 1999;3:88–95.

    Article  Google Scholar 

  35. Lie T. Scanning and transmission electron microscope study of pellicle morphogenesis. Scand J Dent Res. 1977;85:217–31.

    PubMed  Google Scholar 

  36. Sønju Clasen AB, Hannig M, Skjørland K, Sønju T. Analytical and ultrastructural studies of pellicle on primary teeth. Acta Odontol Scand. 1997;55:339–43.

    PubMed  Google Scholar 

  37. Carlén A, Börjesson A-C, Nikdel K, Olsson J. Composition of pellicles formed in vivo on tooth surfaces in different parts of the dentition, and in vitro on hydroxyapatite. Caries Res. 1998;32:447–55.

    Article  PubMed  Google Scholar 

  38. Siqueira WL, Custodio W, McDonald EE. New insights into the composition and functions of the acquired enamel pellicle. J Dent Res. 2012;91:1110–8.

    Article  PubMed  Google Scholar 

  39. Slomiany BL, Murty VLN, Zdebska E, Slomiany A, Gwodzinski K, Mandel ID. Tooth surface-pellicle lipids in the protection of dental enamel against lactic acid diffusion in man. Arch Oral Biol. 1986;31:187–91.

    Article  PubMed  Google Scholar 

  40. Wiegand A, Bliggenstorfer S, Magalhaes AC, Sener B, Attin T. Impact of the in situ formed salivary pellicle on enamel and dentine erosion induced by different acids. Acta Odont Scand. 2008;66:225–30.

    Article  PubMed  Google Scholar 

  41. Zahradnik RT, Moreno EC, Burke EJ. Effect of salivary pellicle on enamel subsurface demineralization in vitro. J Dent Res. 1976;55:664–70.

    Article  PubMed  Google Scholar 

  42. Wetton S, Hughes J, Newcombe RG, Addy M. The effect of saliva derived from different individuals on the erosion of enamel and dentine. A study in vitro. Caries Res. 2007;41:423–6.

    Article  PubMed  Google Scholar 

  43. Hannig M, Fiebiger M, Güntzer M, Döbert A, Zimehl R, Nekrashevych Y. Protective effect of the in situ formed short-term salivary pellicle. Arch Oral Biol. 2004;49:903–10.

    Article  PubMed  Google Scholar 

  44. Wetton S, Hughes J, West N, Addy M. Exposure time of enamel and dentine to saliva for protection against erosion: a study in vitro. Caries Res. 2006;40:213–7.

    Article  PubMed  Google Scholar 

  45. Hannig M, Hess NJ, Hoth-Hannig W, De Vrese M. Influence of salivary pellicle formation time on enamel demineralization – an in situ pilot study. Clin Oral Investig. 2003;7:158–61.

    Article  PubMed  Google Scholar 

  46. Addy M, Hunter ML. Can tooth brushing damage your health? Effects on oral and dental tissues. Int Dent J. 2003;53 Suppl 3:177–86.

    Article  PubMed  Google Scholar 

  47. Gregg T, Mace S, West NX, Addy M. A study in vitro of the abrasive effect of the tongue on enamel and dentine softened by acid erosion. Caries Res. 2004;38:557–60.

    Article  PubMed  Google Scholar 

  48. Vieira A, Overweg E, Ruben JL, Huysmans MC. Toothbrush abrasion, simulated tongue friction and attrition of eroded bovine enamel in vitro. J Dent. 2006;34:336–42.

    Article  PubMed  Google Scholar 

  49. Amaechi BT, Higham SM, Edgar WM. Influence of abrasion in clinical manifestation of human dental erosion. J Oral Rehabil. 2003;30:407–13.

    Article  PubMed  Google Scholar 

  50. Wiegand A, Köwing L, Attin T. Impact of brushing force on abrasion of acid-softened and sound enamel. Arch Oral Biol. 2007;52:1043–7.

    Article  PubMed  Google Scholar 

  51. Voronets J, Lussi A. Thickness of softened human enamel removed by toothbrush abrasion: an in vitro study. Clin Oral Invest. 2010;14:251–6.

    Article  Google Scholar 

  52. Wiegand A, Begic M, Attin T. In vitro evaluation of abrasion of eroded enamel by different manual, power and sonic toothbrushes. Caries Res. 2006;40:60–5.

    Article  PubMed  Google Scholar 

  53. Ganss C, Klimek J, Starck C. Quantitative analysis of the impact of the organic matrix on the fluoride effect on erosion progression in human dentine using longitudinal microradiography. Arch Oral Biol. 2004;49:931–5.

    Article  PubMed  Google Scholar 

  54. Schlueter N, Glatzki J, Klimek J, Ganss C. Erosive-abrasive tissue loss in dentine under simulated bulimic conditions. Arch Oral Biol. 2012;57:1176–82.

    Article  PubMed  Google Scholar 

  55. Bader JD, McClure F, Scurria MS, Shugars DA, Heymann HO. Case-control study of non-carious cervical lesions. Community Dent Oral Epidemiol. 1996;24:286–91.

    Article  PubMed  Google Scholar 

  56. Bartlett DW, Shah P. A critical review of non-carious cervical (wear) lesions and the role of abfraction, erosion and abrasion. J Dent Res. 2006;85:306–12.

    Article  PubMed  Google Scholar 

  57. Milosevic A, Lennon MA, Fear SC. Risk factors associated with tooth wear in teenagers: a case control study. Community Dent Health. 1997;14:143–7.

    PubMed  Google Scholar 

  58. Al-Dlaigan YH, Shaw L, Smith AJ. Dental erosion in a group of British 14-year-old school children. Part II: Influence of dietary intake. Br Dent J. 2001;190:258–61.

    PubMed  Google Scholar 

  59. Dugmore CR, Rock WP. A multifactorial analysis of factors associated with dental erosion. Br Dent J. 2004;196:283–6.

    Article  PubMed  Google Scholar 

  60. Ganss C, Schlechtriemen M, Klimek J. Dental erosions in subjects living on a raw food diet. Caries Res. 1999;33:74–80.

    Article  PubMed  Google Scholar 

  61. Lussi A, Schaffner M. Progression of and risk factors for dental erosion and wedge-shaped defects over a 6-year period. Caries Res. 2000;34:182–7.

    Article  PubMed  Google Scholar 

  62. Zero D. Behavioral factors. In: Lussi A, editor. Dental erosion. (Monogr Oral Sci 20). Basel: Karger; 2006. p. 100–5.

    Chapter  Google Scholar 

  63. Rytömaa I, Järvinen V, Kanerva R, Heinonen OP. Bulimia and tooth erosion. Acta Odont Scand. 1998;56:36–40.

    Article  PubMed  Google Scholar 

  64. Wiegand A, Müller J, Werner C, Attin T. Prevalence of erosive tooth wear and associated risk factors in 2-7-year-old German kindergarten children. Oral Dis. 2006;12:117–24.

    Article  PubMed  Google Scholar 

  65. Jaeggi T, Lussi A. Toothbrush abrasion of erosively altered enamel after intraoral exposure to saliva: an in situ study. Caries Res. 1999;33:455–61.

    Article  PubMed  Google Scholar 

  66. Attin T, Knöfel S, Buchalla W, Tütüncü R. In situ evaluation of different remineralization periods to decrease brushing abrasion of demineralized enamel. Caries Res. 2001;35:216–22.

    Article  PubMed  Google Scholar 

  67. Amaechi BT, Higham SM. In vitro remineralization of eroded enamel lesions by saliva. J Dent. 2001;29:371–6.

    Article  PubMed  Google Scholar 

  68. Hara AT, Turssi CP, Teixeira ECN, Serra MC, Cury JA. Abrasive wear on eroded root dentine after different periods of exposure to saliva in situ. Eur J Oral Sci. 2003;111:423–7.

    Article  PubMed  Google Scholar 

  69. Attin T, Siegel S, Buchalla W, Lennon ÀM, Hannig C, Becker K. Brushing abrasion of softened and remineralised dentin: an in situ study. Caries Res. 2004;38:62–6.

    Article  PubMed  Google Scholar 

  70. Ganss C, Schlueter N, Friedrich D, Klimek J. Efficacy of waiting periods and topical fluoride treatment on toothbrush abrasion of eroded enamel in situ. Caries Res. 2007;41:146–51.

    Article  PubMed  Google Scholar 

  71. Attin T, Zirkel C, Hellwig E. Brushing abrasion of eroded dentin after application of sodium fluoride solutions. Caries Res. 1998;32:344–50.

    Article  PubMed  Google Scholar 

  72. Ganss C, Klimek J, Schäffer U, Spall T. Effectiveness of two fluoridation measures on erosion progression in human enamel and dentine in vitro. Caries Res. 2001;35:325–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Shellis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shellis, R.P. (2015). The Dental Erosion Process. In: Amaechi, B. (eds) Dental Erosion and Its Clinical Management. Springer, Cham. https://doi.org/10.1007/978-3-319-13993-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13993-7_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13992-0

  • Online ISBN: 978-3-319-13993-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics