Skip to main content

Part of the book series: Progress in Probability ((PRPR,volume 69))

Abstract

In this paper we present a survey on recent developments in the study of ambit fields and point out some open problems. Ambit fields is a class of spatio-temporal stochastic processes, which by its general structure constitutes a flexible model for dynamical structures in time and/or in space. We will review their basic probabilistic properties, main stochastic integration concepts and recent limit theory for high frequency statistics of ambit fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    From Latin ambitus: a sphere of influence

References

  1. D.J. Aldous, G.K. Eagleson, On mixing and stability of limit theorems. Ann. Probab. 6(2), 325–331 (1978)

    Article  MathSciNet  Google Scholar 

  2. E. Alos, O. Mazet, D. Nualart, Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29(2), 766–801 (2001)

    Article  MathSciNet  Google Scholar 

  3. O.E. Barndorff-Nielsen, J. Schmiegel, Ambit processes; with applications to turbulence and cancer growth, in Stochastic Analysis and Applications: The Abel Symposium 2005, ed. by F.E. Benth, G.D. Nunno, T. Linstrøm, B. Øksendal, T. Zhang (Springer, Heidelberg, 2007), pp. 93–124

    Google Scholar 

  4. O.E. Barndorff-Nielsen, J. Schmiegel, Time change, volatility and turbulence, in Proceedings of the Workshop on Mathematical Control Theory and Finance, Lisbon 2007, ed. by A. Sarychev, A. Shiryaev, M. Guerra, M.d.R. Grossinho (Springer, Berlin, 2008), pp. 29–53

    Google Scholar 

  5. O.E. Barndorff-Nielsen, J. Schmiegel, Brownian semistationary processes and volatility/intermittency, in Advanced Financial Modelling, ed. by H. Albrecher, W. Runggaldier, W. Schachermayer (Walter de Gruyter, Berlin, 2009), pp. 1–26

    Google Scholar 

  6. O.E. Barndorff-Nielsen, S.E. Graversen, J. Jacod, M. Podolskij, N. Shephard, A central limit theorem for realised power and bipower variations of continuous semimartingales, in From Stochastic Calculus to Mathematical Finance. Festschrift in Honour of A.N. Shiryaev, ed. by Yu. Kabanov, R. Liptser, J. Stoyanov (Springer, Heidelberg, 2006), pp. 33–68

    Google Scholar 

  7. O.E. Barndorff-Nielsen, E.B.V. Jensen, K.Y. Jónsdóttir, J. Schmiegel, Spatio-temporal modelling – with a view to biological growth, in Statistical Methods for Spatio-Temporal Systems, ed. by B. Finkenstädt, L. Held, V. Isham (Chapman and Hall/CRC, London, 2007), pp. 47–75

    Google Scholar 

  8. O.E. Barndorff-Nielsen, J.M. Corcuera, M. Podolskij, Power variation for Gaussian processes with stationary increments. Stoch. Process. Their Appl. 119, 1845–865 (2009)

    Article  MathSciNet  Google Scholar 

  9. O.E. Barndorff-Nielsen, J.M. Corcuera, M. Podolskij, Multipower variation for Brownian semistationary processes. Bernoulli 17(4), 1159–1194 (2011)

    Google Scholar 

  10. O.E. Barndorff-Nielsen, F.E. Benth, A. Veraart, Modelling energy spot prices by volatility modulated Lévy-driven Volterra processes. Bernoulli 19(3), 803–845 (2013)

    Article  MathSciNet  Google Scholar 

  11. O.E. Barndorff-Nielsen, J.M. Corcuera, M. Podolskij, Limit theorems for functionals of higher order differences of Brownian semi-stationary processes, in Prokhorov and Contemporary Probability Theory: In Honor of Yuri V. Prokhorov, ed. by A.N. Shiryaev, S.R.S. Varadhan, E.L. Presman (Springer, Berlin/New York, 2013)

    Google Scholar 

  12. O.E. Barndorff-Nielsen, F.E. Benth, J. Pedersen, A. Veraart, On stochastic integration for volatility modulated Lévydriven Volterra processes. Stoch. Process. Their Appl. 124(1), 812–847 (2014)

    Article  MathSciNet  Google Scholar 

  13. O.E. Barndorff-Nielsen, F.E. Benth, B. Szozda, On stochastic integration for volatility modulated Brownian-driven Volterra processes via white noise analysis. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 17(2), 1450011 (2014)

    Google Scholar 

  14. O.E. Barndorff-Nielsen, F.E. Benth, A. Veraart, Recent advances in ambit stochastics with a view towards tempo-spatial stochastic volatility/intermittency. Banach Center Publ. 104, 25–60 (2015)

    Article  Google Scholar 

  15. O.E. Barndorff-Nielsen, M. Pakkanen, J. Schmiegel, Assessing relative volatility/intermittency/energy dissipation. Electron. J. Stat. 8(2), 1996–2021 (2014)

    Article  MathSciNet  Google Scholar 

  16. A. Basse, Gaussian moving averages and semimartingales. Electron. J. Probab. 13(39), 1140–1165 (2008)

    MathSciNet  Google Scholar 

  17. A. Basse, J. Pedersen, Lévy driven moving averages and semimartingales. Stoch. Process. Their Appl. 119(9), 2970–2991 (2009)

    Article  MathSciNet  Google Scholar 

  18. A. Basse-O’Connor, J. Rosinski, On infinitely divisible semimartingales. Probab. Theory Relat. Fields (2012, to appear)

    Google Scholar 

  19. A. Basse-O’Connor, R. Lachieze-Rey, M. Podolskij, Limit theorems for Lévy moving average processes. Working paper (2014)

    Google Scholar 

  20. A. Benassi, S. Cohen, J. Istas, On roughness indices for fractional fields. Bernoulli 10(2), 357–373 (2004)

    Article  MathSciNet  Google Scholar 

  21. C. Bender, A. Lindner, M. Schicks, Finite variation of fractional Levy processes. J. Theor. Probab. 25(2), 594–612 (2012)

    Article  MathSciNet  Google Scholar 

  22. F.E. Benth, A. Süß, Integration theory for infinite dimensional volatility modulated Volterra processes. Working paper (2013). Available at arXiv:1303.7143

    Google Scholar 

  23. F.E. Benth, H. Eyjolfsson, A.E.D. Veraart, Approximating Lévy semistationary processes via Fourier methods in the context of power markets. SIAM J. Financ. Math. 5(1), 71–98 (2014)

    Article  MathSciNet  Google Scholar 

  24. K. Bichteler, J. Jacod, Random measures and stochastic integration, in Theory and Application of Random Fields. Lecture Notes in Control and Information Sciences, vol. 49, (Springer, Berlin/Heidelberg, 1983), pp. 1–18

    Google Scholar 

  25. P. Breuer, P. Major, Central limit theorems for nonlinear functionals of Gaussian fields. J. Multivar. Anal. 13(3), 425–441 (1983)

    Article  MathSciNet  Google Scholar 

  26. C. Chong, C. Klüppelberg, Integrability conditions for space-time stochastic integrals: theory and applications. Bernoulli (2014, to appear)

    Google Scholar 

  27. J.M. Corcuera, D. Nualart, J.H.C. Woerner, Power variation of some integral fractional processes. Bernoulli 12(4), 713–735 (2006)

    Article  MathSciNet  Google Scholar 

  28. J.M. Corcuera, E. Hedevang, M. Pakkanen, M. Podolskij, Asymptotic theory for Brownian semi-stationary processes with application to turbulence. Stoch. Process. Their Appl. 123, 2552–2574 (2013)

    Article  MathSciNet  Google Scholar 

  29. J.M. Corcuera, D. Nualart, M. Podolskij, Asymptotics of weighted random sums. Commun. Appl. Ind. Math. (2014, to appear)

    Google Scholar 

  30. R.C. Dalang, L. Quer-Sardanyons, Stochastic integrals for spde’s: a comparison. Expos. Math. 12(1), 67–109 (2011)

    Article  MathSciNet  Google Scholar 

  31. G. Di Nunno, B. Oksendal, F. Proske, Malliavin Calculus for Lévy Processes with Applications to Finance (Springer, Berlin, 2009)

    Book  Google Scholar 

  32. K. Gärtner, M. Podolskij, On non-standard limits of Brownian semi-stationary processes. Stoch. Process. Their Appl. 125(2), 653–677 (2014)

    Article  Google Scholar 

  33. S. Glaser, A law of large numbers for the power variation of fractional Lévy processes. Stoch. Anal. Appl. 33(1), 1–20 (2015)

    Article  MathSciNet  Google Scholar 

  34. J. Jacod, Asymptotic properties of realized power variations and related functionals of semimartingales. Stoch. Process. Appl. 118, 517–559 (2008)

    Article  MathSciNet  Google Scholar 

  35. J. Jacod, P.E. Protter, Discretization of Processes (Springer, Berlin/Heidelberg/New York, 2012)

    Book  Google Scholar 

  36. J. Jacod, A.N. Shiryaev, Limit Theorems for Stochastic Processes, 2d edn. (Springer, Berlin. 2002)

    Google Scholar 

  37. T. Jeulin, M. Yor, Moyennes mobiles et semimartingales, in Séminaire de Probabilités XXVII, vol. 1557 (Springer, Berlin, 1993), pp. 53–77

    Book  Google Scholar 

  38. F.B. Knight, Foundations of the Prediction Process. Volume 1 of Oxford Studies in Probability (The Clarendon Press/Oxford University Press/Oxford Science Publications, New York, 1992)

    Google Scholar 

  39. T. Marquardt, Fractional Lévy processes with an application to long memory moving average processes. Bernoulli 12, 1090–1126 (2006)

    Article  MathSciNet  Google Scholar 

  40. D. Nualart, The Malliavin Calculus and Related Topics, 2nd edn. (Springer, Berlin, 2006)

    Google Scholar 

  41. D. Nualart, G. Peccati, Central limit theorems for multiple stochastic integrals. Ann. Probab. 33(1), 177–193 (2005)

    Article  MathSciNet  Google Scholar 

  42. M. Pakkanen, Limit theorems for power variations of ambit fields driven by white noise. Stoch. Process. Their Appl. 124(5), 1942–1973 (2014)

    Article  MathSciNet  Google Scholar 

  43. M. Pakkanen, A. Réveillac, Functional limit theorems for generalized variations of the fractional Brownian sheet. Bernoulli (2015, to appear)

    Google Scholar 

  44. G. Peccati, C.A. Tudor, Gaussian limits for vector-values multiple stochastic integrals, in Séminaire de Probabilités XXXVIII. Lecture Notes in Mathematics, vol. 1857 (Springer, Berlin, 2005), pp. 247–193

    Google Scholar 

  45. P. Protter, Volterra equations driven by semimartingales. Ann. Probab. 13(2), 519–530 (1985)

    Article  MathSciNet  Google Scholar 

  46. B. Rajput, J. Rosinski, Spectral representation of infinitely divisible distributions. Probab. Theory Relat. Fields 82, 451–487 (1989)

    Article  MathSciNet  Google Scholar 

  47. A. Rényi, On stable sequences of events. Sankhyā Ser. A 25, 293–302 (1963)

    Google Scholar 

  48. A. Réveillac, Estimation of quadratic variation for two-parameter diffusions. Stoch. Process. Their Appl. 119(5), 1652–1672 (2009)

    Article  Google Scholar 

  49. M. Taqqu, Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50(1), 53–83 (1979)

    Article  MathSciNet  Google Scholar 

  50. J. Walsh, An introduction to stochastic partial differential equations, in École d’Eté de Prob. de St. Flour XIV. Lecture Notes in Mathematics, vol. 1180 (Springer, Berlin/Heidelberg, 1986), pp. 265–439

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Podolskij .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Podolskij, M. (2015). Ambit Fields: Survey and New Challenges. In: Mena, R., Pardo, J., Rivero, V., Uribe Bravo, G. (eds) XI Symposium on Probability and Stochastic Processes. Progress in Probability, vol 69. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-13984-5_12

Download citation

Publish with us

Policies and ethics