Skip to main content

Anthropometric and Anthropomorphic Features Applied to a Mechanical Finger

  • Conference paper
  • 3246 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8917))

Abstract

This work presents the dimensional synthesis for a mechanical finger, based in four bar mechanisms, where the anthropometric and kinematic constrictions of the human finger are satisfied; the basic criteria used for the dimensional synthesis is the maximum rotation angle for each phalanx, so a human like motion may be achieved. The synthesis of each finger is obtained via Freudenstein’s methodology, assuming that the links lengths are constant, and fixed to a main link, the pivot of the system is the knuckle. The only variable which may modify the displacement behavior of the system is the coupler links for each four-bar mechanism; therefore its length is directly related to the position of the finger, such a mechanism has to be able to withstand the average loads and impacts that may happen in a unstructured environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. OpenStax College. Muscles of the Pectoral Girdle and Upper Limbs(June 28, 2014), http://cnx.org/content/m46495/latest/content_info#cnx_attribution_header (Cited: July 14, 2014)

  2. Jacobsen, S.C., Iversen, E.K., Knutti, D.F., Johnson, R.T., Biggers, K.B.: Design of the UTHA/M.I.T. dextrous hand. In: International Conference on Robotics and Automation, pp. 1520–1532. IEEE Xplore Press (1986)

    Google Scholar 

  3. Salisbury, J.J.: Articulated Hands: Force control and Kinematics issues. Int. J. Robot. Res. 4, 17 (1982)

    Google Scholar 

  4. Christopher, L., Xu, Y.: Actuability of UNderactuated Manipulators. Carnegie Mellon University, Pittsburgh (1994)

    Google Scholar 

  5. Caffaz, A., Cannata, G.: The design and development of the DIST-hand Dextrous Gripper. In: International Conference on Robotics and Automation, pp. 2075–2080. IEEE (1998)

    Google Scholar 

  6. Taylor, C.L., Schwarz, R.J.: The Anatomy and Mechanics of the Humand Hand. Artificial Limbs: A Review of Current Developments, pp. 2:22–2:35 (May 1955)

    Google Scholar 

  7. Tubiana, R.: Physiologie des Mouvements et Prehension, Paris. Massons (1980)

    Google Scholar 

  8. Gosselin, Laliberté, Clement: Simulation and design of Underactuated Mechanicla Hands. Mechanism and Machine Theory 33(1), 39–57 (1998)

    MATH  Google Scholar 

  9. Kamper, D.G., Cruz, E.G., Siegel, M.P.: Stereotypical Fingertip Trajectories During Grasp. J. Neurophysiol. 90, 3702–3710 (2003), doi:10.1152/jn.00546.2003

    Article  Google Scholar 

  10. Mason, M.T., Salisbury, J.K.: Robot Hands and the Mechanis of manipulation. MIT (1985)

    Google Scholar 

  11. Pons, J.L., Rocon, E., Ceres, R.: The MANUS HAND dextrous robotics upper limb prosthesis: Mechanical and manipulation aspects. Autonomous Robots 16, 143–163 (2004)

    Article  Google Scholar 

  12. Dechev, N., Cleghorn, W.L., Numman, S.: Multiple Finger Pasive Adaptative Grasp Prosthetic Hand. Mechanism and Machien Theory (1999)

    Google Scholar 

  13. Jun, U., Masahiro, K., Tsukasa, O.: The Multifingeres Naist hand system for robot in-hand manipulation. Mechanism and Machine Theory, 224–238 (2012)

    Google Scholar 

  14. Wu, L.C., Guiseppe, C., Marco, C.: Designing an underactuated mechanism for a 1 active DOF finger operation. Mechanism and Machine Theory, 336–348 (2009)

    Google Scholar 

  15. Velázquez-Sánchez, A.T., et al.: Síntesis de un mecanismo subactuado a partir de la función decriptiva del dedo índice, vol. 13(2), pp. 1665–0654. Instituto Politécnico Nacional, Mexico (2009)

    Google Scholar 

  16. Otto Bock HealthCare GmbH. Fascinated. With Michelangelo® – Perfect use of precision technology. Duderstadt/Germany: Otto Bock HealthCare GmbH (2011)

    Google Scholar 

  17. Gosselin, L., Birglen, C.: Grasp stability of 2-phalanx underactuated fingers. Journal of Robotic Research (2004)

    Google Scholar 

  18. The Hand Doctor Is. climbers finger. wordpress.org, http://balourdas.com/wp/ (Cited: July 14, 2014)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Prudencio, A., Morales, E., García, M.A., Lozano, A. (2014). Anthropometric and Anthropomorphic Features Applied to a Mechanical Finger. In: Zhang, X., Liu, H., Chen, Z., Wang, N. (eds) Intelligent Robotics and Applications. ICIRA 2014. Lecture Notes in Computer Science(), vol 8917. Springer, Cham. https://doi.org/10.1007/978-3-319-13966-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13966-1_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13965-4

  • Online ISBN: 978-3-319-13966-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics