Skip to main content

Optimal Sensors Deployment for Tracking Level Curve Based on Posterior Cramér-Rao Lower Bound in Scalar Field

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8917))

Abstract

This paper focuses on discussing the space distance of gliders in a group for level curve tracking task. A developed adaptive space distance algorithm for glider formation based on Posterior Cramér-Rao Lower Bound (PCRLB) is proposed. For a feature-tracking application with scalar sensors, gliders are adopted to track a level curve in 2D space. In this work, the white noise from the measurement process and oceanic background is taken into account, as well as the effect of omitting the higher order terms in the Taylor series and roughly estimated Hessian Matrix. Since the PCRLB is an effective criterion to quantify the performance of all unbiased nonlinear estimators of the target state, our adaptive space distance algorithm for gliders may be functional when implemented with many kinds of nonlinear filters together. Finally, the performance of the proposed algorithm in this study is evaluated on simulated platforms by applying it with the Extended Kalman Filter(EKF) and Particle Filter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fiorelli, E., Leonard, N.E., Bhatta, P., Paley, D., Bachmayer, R., Fratantoni, D.M.: Multi-AUV Control and Adaptive Sampling in Monterey Bay. IEEE Journal of Oceanic Engineering 31(4), 935–948 (2006)

    Article  Google Scholar 

  2. Ogren, P., Fiorelli, E., Leonard, N.E.: Cooperative control of mobile sensor networks: Adaptive gradient climbing in a distributed environment. IEEE Transactions on Automatic Control 49(8), 1292–1302 (2004)

    Article  MathSciNet  Google Scholar 

  3. Leonard, N.E., Fiorelli, E.: Virtual leaders, artificial potentials and coordinated control of groups. In: Proceedings of the 40th IEEE Conference on Decision and Control, pp. 2968–2973. IEEE (2001)

    Google Scholar 

  4. Leonard, N.E., Paley, D.A., Lekien, F., Sepulchre, R., Fratantoni, D.M., Davis, R.E.: Collective Motion, Sensor Networks, and Ocean Sampling. Proceedings of the IEEE 95(1), 48–74 (2007)

    Article  Google Scholar 

  5. Smith, R.N., Yi, C., Li, P.P., Caron, D.A., Jones, B.H., Sukhatme, G.S.: Planning and Implementing Trajectories for Autonomous Underwater Vehicles to Track Evolving Ocean Processes Based on Predictions from a Regional Ocean Model. The International Journal of Robotics Research 29(12), 1475–1497 (2010)

    Article  Google Scholar 

  6. Paley, D.A., Zhang, F., Leonard, N.E.: Cooperative Control for Ocean Sampling: The Glider Coordinated Control System. IEEE Transactions on Control Systems Technology 16, 735–744 (2008)

    Article  Google Scholar 

  7. Zhang, F., Leonard, N.E.: Cooperative Filters and Control for Cooperative Exploration. IEEE Transactions on Automatic Control 55(3), 650–663 (2010)

    Article  MathSciNet  Google Scholar 

  8. Wu, W., Zhang, F.: Cooperative exploration of level surfaces of three dimensional scalar fields. Automatica 47(9), 2044–2051 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Wu, W., Zhang, F.: A Switching Strategy for Target Tracking by Mobile Sensing Agents. Journal of Communications 8, 47–54 (2013)

    Article  Google Scholar 

  10. Hernandez, M.L., Kirubarajan, T., Bar-Shalom, Y.: Multisensor resource deployment using posterior Cramer-Rao bounds. IEEE Transactions on Aerospace and Electronic Systems 40, 399–416 (2004)

    Article  Google Scholar 

  11. Tharmarasa, R., Kirubarajan, T., Hernandez, M., Sinha, A.: PCRLB-based multisensor array management for multitarget tracking. IEEE Transactions on Aerospace and Electronic Systems 43, 539–555 (2007)

    Article  Google Scholar 

  12. Zhong, X., Premkumar, A.B., Madhukumar, A.S.: Particle Filtering and Posterior Cramér-Rao Bound for 2-D Direction of Arrival Tracking Using an Acoustic Vector Sensor. Sensors Journal 12(2), 363–377 (2012)

    Article  Google Scholar 

  13. Van Trees, H.L.: Detection, Estimation, and Modulation Theory. Wiley, New York (1968)

    MATH  Google Scholar 

  14. Zhang, S., Yu, J., Zhang, A., Zhao, W.: Tracking strategy analysis with multi underwater vehicles for ocean feature. Chin. Sci. Bull (Chin. Ver.), 1–5 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhao, W., Yu, J., Zhang, A., Li, Y. (2014). Optimal Sensors Deployment for Tracking Level Curve Based on Posterior Cramér-Rao Lower Bound in Scalar Field. In: Zhang, X., Liu, H., Chen, Z., Wang, N. (eds) Intelligent Robotics and Applications. ICIRA 2014. Lecture Notes in Computer Science(), vol 8917. Springer, Cham. https://doi.org/10.1007/978-3-319-13966-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13966-1_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13965-4

  • Online ISBN: 978-3-319-13966-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics