Skip to main content

Elastodynamics of the Rigid-Flexible 3-ṞRR Mechanism Using ANCF Method

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8918))

Included in the following conference series:

Abstract

The elastodynamics of the 3-RRR mechanism is studied in this paper. The absolute nodal coordinate formulation (ANCF) is used to model the flexible links, the generalized α method with several efficient methods are adopted to solve the equations of motion of the system. A comparison is made between the rigid and flexible links of the mechanism. The results show that the flexibility of the link affects the displacement, velocity and acceleration of the moving platform significantly, and the flexure mechanism exhibits high frequencies vibrations

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhang, X.C., Zhang, X.M., Chen, Z.: Dynamic analysis of a 3-RRR parallel mechanism with multiple clearance joints. Mechanism and Machine Theory 78, 105–115 (2014)

    Article  Google Scholar 

  2. Zhang, X.C., Zhang, X.M.: Dynamic analysis of a 3-RRR parallel robot with Joint clearances using natural coordinates. In: ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2014), DETC2014-34609, New York, pp. 1–9 (2014)

    Google Scholar 

  3. Tian, Q., Zhang, Y.Q., Cheng, L.P., Yang, J.Z.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyns. 60, 489–511 (2010)

    Article  MATH  Google Scholar 

  4. Tian, Q., Zhang, Y.Q., Cheng, L.P., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87, 913–929 (2009)

    Article  Google Scholar 

  5. Zhao, B., Zhang, Z.N., Dai, X.D.: Modeling and prediction of wear at revolute clearance joints in flexible multibody systems. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 4, 1–13 (2013)

    Google Scholar 

  6. Shabana, A.A.: An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies. Technical Report. No. MBS96-1-UIC, University of Illinois at Chicago (1996)

    Google Scholar 

  7. Shabana, A.A.: Definition of the slopes and absolute nodal coordinate formulation. Multibody Syst. Dyn. 1, 339–348 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Shabana, A.A.: Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  9. Flores, P., Machado, M., Seabra, E., Sliva, M.T.: A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. ASME J. Comput. Nonlinear Dyn. 6, 011019/1–9 (2011)

    Google Scholar 

  10. Arnold, M., Bruls, O.: Convergence of the generalized-a scheme for constrained mechanical systems. Multibody Syst. Dyn. 18, 185–202 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Newmark, N.: A method of computation for structural dynamics. ASCE J. Eng. Mech. Div. 85, 67–94

    Google Scholar 

  12. Hilber, H., Hughes, T., Taylor, R.: Improved numerical dissipation for time integration algorithms instructural dynamics. Earthq. Eng. Struct. Dyn. 5, 283–292 (1977)

    Article  Google Scholar 

  13. Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method. ASME J. Appl. Mech. 60, 371–375 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Berzeri, M., Shabana, A.A.: Development of simple models for the elastic forces in the absolute nodal coordinate formulation. Journal of Sound and Vibration 235(4), 539–565 (2000)

    Article  Google Scholar 

  15. Garcia-Vallejo, D., Mayo, J., Escalona, J.L., Dominguez, J.: Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation. Nonlinear Dynamics 35, 313–329 (2004)

    Article  MATH  Google Scholar 

  16. Broyden, C.G.: A class of methods for solving nonlinear simultaneous equations. Math. Compu. 19(92), 577–593 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, X., Zhang, X. (2014). Elastodynamics of the Rigid-Flexible 3-ṞRR Mechanism Using ANCF Method. In: Zhang, X., Liu, H., Chen, Z., Wang, N. (eds) Intelligent Robotics and Applications. ICIRA 2014. Lecture Notes in Computer Science(), vol 8918. Springer, Cham. https://doi.org/10.1007/978-3-319-13963-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13963-0_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13962-3

  • Online ISBN: 978-3-319-13963-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics