Skip to main content

Antarcticite: A Phase Change Material for Thermal Energy Storage––Experiments and Simulation

  • Conference paper
Proceedings of the 11th International Congress for Applied Mineralogy (ICAM)

Part of the book series: Springer Geochemistry/Mineralogy ((SPRINGERGEOCHEM))

  • 1453 Accesses

Abstract

Antarcticite, CaCl2 · 6H2O, is an ideal phase change material (PCM) due to its high-energy storage density and good thermal conductivity. In this chapter, supercooling and subsequent solidification behavior of antarcticite are studied based on the cooling curve method and DSC measurement. The results show that the minor SrCl2 · 6H2O as the nucleator and carboxymethyl cellulose as the thickening agent could significantly reduce supercooling and partly restrain the phase separation. Moreover, we incorporated antarcticite as PCM into building envelopes in four different cases, and the simulation of the heat transfer processes showed that the temperature fluctuation could be reduced to about 2 °C in the best case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang Z, Shi G, Wang S, Fang X, Liu X (2013) Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material. Renew Energy 50:670–675

    Article  Google Scholar 

  2. Nomura T, Tsubota M, Oya T, Okinaka N, Akiyama T (2013) Heat storage in direct-contact heat exchanger with phase change material. Appl Therm Eng 50(1):26–34

    Article  Google Scholar 

  3. Waqas A, Din ZU (2013) Phase change material (PCM) storage for free cooling of buildings—A review. Renew Sustain Energy Rev 18:607–625

    Article  Google Scholar 

  4. Anisur MR, Mahfuz MH, Kibria MA, Saidur R, Metselaar IHSC, Mahlia TMI (2013) Curbing global warming with phase change materials for energy storage. Renew Sustain Energy Rev 18(C):23–30

    Article  Google Scholar 

  5. Torii T, Ossaka J (1965) Antarcticite: a new mineral, calcium chloride hexahydrate, discovered in Antarctica. Science 149(3687):975–977

    Article  Google Scholar 

  6. Liu Z, Chung DDL (2001) Calorimetric evaluation of phase change materials for use as thermal interface materials. Thermochim Acta 366(2):135–147

    Article  Google Scholar 

  7. Voelker C, Kornadt O, Ostry M (2008) Temperature reduction due to the application of phase change materials. Energy Build 40(5):937–944

    Article  Google Scholar 

  8. Liu D, Xu YL (2007) Thermoproperties research on nucleators-CaCl2 · 6H2O composites under distinctive systems. Acta Energ Sol Sinica 28(7):732–738

    Google Scholar 

  9. Shi MM, Zhang XL (2010) Preparation of phase-change material for natural cool energy storage and its characteristics. Chem Eng China 38(9):82–85

    Google Scholar 

  10. Lane GA (1992) Phase change materials for energy storage nucleation to prevent supercooling. Sol Energy Mater Sol Cells 27(2):135–160

    Article  Google Scholar 

  11. Kuznik F, Virgone J, Noel J (2008) Optimization of a phase change material wallboard for building use. Appl Therm Eng 28(11):1291–1298

    Article  Google Scholar 

  12. Ahmad M, Bontemps A, Sallée H, Quenard D (2006) Experimental investigation and computer simulation of thermal behaviour of wallboards containing a phase change material. Energy Build 38(4):357–366

    Article  Google Scholar 

  13. Alawadhi EM (2008) Thermal analysis of a building brick containing phase change material. Energy Build 40(3):351–357

    Article  Google Scholar 

  14. Moaveni S (2003) Finite element analysis: theory and application with ANSYS. Pearson Education, India

    Google Scholar 

  15. Zalba B, Marın JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23(3):251–283

    Article  Google Scholar 

  16. Yang QX (1992) Theoretical approach to the thermal property of wood: thermal conductivity and diffusivity of wood. J Fujian Coll Forest 12(2):182–188

    Google Scholar 

  17. Liu YN (2007) Energy conservation research of composite PCM wallboard applied in the north residential building. Doctoral dissertation, Beijing, North China University of Technology

    Google Scholar 

  18. Mullin JW (2000) Crystallization, 3rd edn. Heinemann, Butterworth

    Google Scholar 

  19. Leclaire A, Borel MM (1977) Le dichlorure et le dibromure de calcium hexahydrates. Acta Crystallogr Sect B: Struct Crystallogr Cryst Chem 33(9):2938–2940

    Article  Google Scholar 

  20. Abrahams I, Vordemvenne E (1995) Strontium dibromide hexahydrate. Acta Crystallogr Sect C: Cryst Struct Commun 51(2):183–185

    Article  Google Scholar 

  21. Telkes M (1952) Nucleation of supersaturated inorganic salt solutions. Ind Eng Chem 44(6):1308–1310

    Article  Google Scholar 

  22. Feilchenfeld H, Sarig S (1985) Calcium chloride hexahydrate: a phase-changing material for energy storage. Ind Eng Chem Prod Res Dev 24(1):130–133

    Article  Google Scholar 

Download references

Acknowledgment

This work is financially supported by Beijing Nature Science Foundation (2132024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gu, X., Niu, J., Qin, S. (2015). Antarcticite: A Phase Change Material for Thermal Energy Storage––Experiments and Simulation. In: Dong, F. (eds) Proceedings of the 11th International Congress for Applied Mineralogy (ICAM). Springer Geochemistry/Mineralogy. Springer, Cham. https://doi.org/10.1007/978-3-319-13948-7_14

Download citation

Publish with us

Policies and ethics