Skip to main content

Growth Mechanism and Stability Study on the Fe3S4 Nanocrystals Synthesized Under Thermal and Humid Conditions

  • Conference paper

Part of the book series: Springer Geochemistry/Mineralogy ((SPRINGERGEOCHEM))

Abstract

Greigite (Fe3S4) is important magnetic mineral that can not only instruct reducing environment but also provide paleomagnetic signal for the paleoenvironment research. Generally Fe3S4 exists as an unstable intermediate, whose preparation condition is rigorous. Previous studies have accumulated rich results, but the research on its stable conditions, formation mechanism, and evolution process remains to be verified. This study simulates the mineral growth and carries out experimental research systematically under thermal and humid conditions. Pure Fe3S4 is synthesized under the conditions of 200 °C, t = 30 h, pH = 4–5. The morphology of Fe3S4 is nanoscale particles. Fe3S4 stably exists at 200 °C, t = 30 h, and transforms to FeS2 with increasing time. The experimental results broaden the stability range of Fe3S4 in the Fe–S binary phase diagram. This study has typomorphic significance on geological conditions and provides a scientific basis for the preparation of Fe3S4 nano-magnetic materials.

Fund: Supported by National Natural Science Foundation (Grant No.:40872045; 41172047); The Opening Project of Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education (12zxgk01).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kiner BJ, Erd RC, Grimaldi FS (1964) Greigite: the thio-spinel of iron, a new mineral. Am Mineral 49:543–555

    Google Scholar 

  2. Andrew PR, Richard LR, Kenneth LV et al (1996) Environmental magnetic implications of greigite (Fe3S4) formation in a 3 m. y. lake sediment record from Butte Valley, northern California. Geophys Res Lett 23(20):2859–2862

    Article  Google Scholar 

  3. Wang Z, Chen Z, Gu J (2005) Occurrence and environmental implications of magnetic iron sulfides in stiff muds from the continental shelf of the East China Sea. Geo-Mar Lett 25(5):300–305

    Article  Google Scholar 

  4. Blanchet CL, Thouveny N, Vidal L (2009) Formation and preservation of greigite (Fe3S4) in sediments from the Santa Barbara Basin: implications for paleoenvironmental changes during the past 35 ka. Paleoceanography 24(2):1–15

    Article  Google Scholar 

  5. Stephen M, Nicholas HCS, Frankel RB et al (1990) Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature 343(6255):258–261

    Article  Google Scholar 

  6. Andrew PR, Gillian MT (1993) Diagenetic formation of ferrimagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand. Earth Planet Sci Lett 115(1–4):257–273

    Google Scholar 

  7. Daniel A, Dobson J (1996) Magnetic investigations of framboidal greigite formation: a record of anthropogenic environmental changes in eutrophic Lake St Moritz, Switzerland. The Holocene 6(2):235–241

    Article  Google Scholar 

  8. Hu S, Appel E, Hoffmann V et al (2002) Identification and magnetic significance of greigite in lake sediments. Sci China Ser D Earth sci 32(3):234–238

    Google Scholar 

  9. Yanzhe F, von Dobeneck T, Franke C et al (2008) Rock magnetic identification and geochemical process models of greigite formation in quaternary marine sediments from the Gulf of Mexico (IODP Hole U1319A). Earth Planet Sci Lett 275(3–4):233–245

    Google Scholar 

  10. Kasama T, Mihály P, Chong RKK et al (2006) Magnetic properties, microstructure, composition, and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography. Am Mineral 91(8–9):1216–1229

    Article  Google Scholar 

  11. Andrew PR, Chang L, Christopher JR et al (2011) Magnetic properties of sedimentary greigite (Fe3S4): an update. Rev Geophys 49(1):1–46

    Google Scholar 

  12. Jeffrey CC, John WM (1987) The characterization of iron sulfide minerals in anoxic marine sediments. Mar Chem 22(2–4):193–206

    Google Scholar 

  13. Saulwood L, Morse FW (1991) Sulfate reduction and iron sulfide mineral formation in Gulf of Mexico anoxic sediments. Am J Sci 291:55–89

    Article  Google Scholar 

  14. Gu L, Vokes FM et al (1990) Melnikovite in the South China type massive sulfide deposits and its annealing. Acta Petrol Mineral 9(4):351–356

    Google Scholar 

  15. Zeng P, Pei R, Hou Z et al (2005) The Dongguashan deposit in the Tongling mineralization cluster area, Anhui: a large-sized superimposition-type copper deposit. Acta Geol Sin 79(1):106–113

    Article  Google Scholar 

  16. Berner RA (1984) Sedimentary pyrite formation: an update. Geochim Cosmochim Acta 48:605–615

    Article  Google Scholar 

  17. Schoonen MAA, Barnes HL (1991) Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100 °C. Geochim Cosmochim Acta 55(6):1505–1514

    Article  Google Scholar 

  18. Stanjekl H, Fassbinder JWE, Vali H et al (1994) Evidence of biogenic greigite (ferrimagnetic Fe3S4) in soil. Eur J Soil Sci 45(2):97–103

    Article  Google Scholar 

  19. Dong J, Zhang S, Ganqing J et al (2013) Greigite from carbonate concretions of the Ediacaran Doushantuo formation in South China and its environmental implications. Precambrian Res 225:77–85

    Article  Google Scholar 

  20. Snowball I, Thompson R (1988) The occurrence of greigite in sediments from Loch Lomond. J Quat Sci 3(2):121–125

    Article  Google Scholar 

  21. Bian W, Deng J et al (2004) Comprehensive analysis of electron diffraction pattern application. J Chin Electron Microsc Soc 23(4):426

    Google Scholar 

  22. Feng Y, Ma T, Liu L et al (2009) Insights into shape control and growth mechanism of inorganic nanocrystals. Sci China Ser B Chem 39(9):864–886

    Google Scholar 

  23. Jingzhong C (2001) Chemical theory and method of modern crystal. Higher Education Press, Beijing, pp 126–128

    Google Scholar 

  24. Wilkin RT, Barnes HL (1996) Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochim Cosmochim Acta 60(21):4167–4179

    Article  Google Scholar 

  25. Hunger S, Benning LG (2007) Greigite: a true intermediate on the polysulfide pathway to pyrite. Geochem Trans 8(1):1–20

    Article  Google Scholar 

  26. Chen Z (1984) On mineral sequence and mineral paragenesis. J Chengdu Inst Geol 03:1–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gao, S. et al. (2015). Growth Mechanism and Stability Study on the Fe3S4 Nanocrystals Synthesized Under Thermal and Humid Conditions. In: Dong, F. (eds) Proceedings of the 11th International Congress for Applied Mineralogy (ICAM). Springer Geochemistry/Mineralogy. Springer, Cham. https://doi.org/10.1007/978-3-319-13948-7_13

Download citation

Publish with us

Policies and ethics