Skip to main content

Paraquat: Molecular Mechanisms of Neurotoxicity and its Relation with Autophagy

  • Chapter
  • First Online:

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 9))

Abstract

Paraquat (1,1´-dimethyl-4,4´-bipyridilium dichloride; PQ) is an effective and widely used herbicide in Asiatic and American countries awith a claimed safety record when appropriately applied to eliminate weeds. However, over the last decades a growing body of epidemiologic evidence has been linking long-term/low-dose PQ exposure to the development of Parkinson’s disease (PD). PQ is well known for its ability to induce oxidative stress, mitochondrial dysfunction, α-synuclein fibrillation and neuronal cell loss. More recently, more attention has been given to the role of autophagy in several major neurodegenerative diseases and the influence of environmental toxins in this pathway. This chapter provides an overview of the main mechanisms of neurotoxicity of PQ with an emphasis in the autophagic process and its possible relationship to PD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AP-1:

Activatorprotein 1

MPP+ :

1-methyl-4-phenylpyridine

NF-κB:

Nuclear factor kappa B

PD:

Parkinson’s disease

PQ:

Paraquat

ROS:

Reactive oxygen species

SN:

Substantia nigra

References

  1. Lee K, Park EK, Stoecklin-Marois M, Koivunen ME, Gee SJ, Hammock BD, et al. Occupational paraquat exposure of agricultural workers in large Costa Rican farms. Int Arch Occup Environ Health. 2009;82(4):455–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Bertolote JM, Fleischmann A, Eddleston M, Gunnell D. Deaths from pesticide poisoning: a global response. Br J Psychiatry. 2006;189:201–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Smith P, Heath D. The pathology of the lung in paraquat poisoning. J Clin Pathol Suppl (R Coll Pathol). 1975;9:81–93.

    Article  CAS  Google Scholar 

  4. Dinis-Oliveira RJ, Remiao F, Carmo H, Duarte JA, Navarro AS, Bastos ML, et al. Paraquat exposure as an etiological factor of Parkinson’s disease. Neurotoxicology. 2006;27(6):1110–22.

    Article  CAS  PubMed  Google Scholar 

  5. Dinis-Oliveira RJ, Sousa C, Remiao F, Duarte JA, Ferreira R, Sanchez Navarro A, et al. Sodium salicylate prevents paraquat-induced apoptosis in the rat lung. Free Radic Biol Med. 2007;43(1):48–61.

    Article  CAS  PubMed  Google Scholar 

  6. Dinis-Oliveira RJ, Sousa C, Remiao F, Duarte JA, Navarro AS, Bastos ML, et al. Full survival of paraquat-exposed rats after treatment with sodium salicylate. Free Radic Biol Med. 2007;42(7):1017–28.

    Article  CAS  PubMed  Google Scholar 

  7. Baltazar MT, Dinis-Oliveira RJ, de Lourdes Bastos M, Tsatsakis AM, Duarte JA, Carvalho F. Pesticides exposure as etiological factors of Parkinson’s disease and other neurodegenerative diseases-A mechanistic approach. Toxicol Lett. 2014;230:85–103.

    Article  CAS  PubMed  Google Scholar 

  8. van der Mark M Brouwer M Kromhout H Nijssen P Huss A Vermeulen R. Is pesticide use related to Parkinson disease? Some clues to heterogeneity in study results. Environ Health Perspect. 2012;120(3):340–7.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Van Maele-Fabry G Hoet P Vilain F Lison D. Occupational exposure to pesticides and Parkinson’s disease: a systematic review and meta-analysis of cohort studies. Environ Int. 2012;46:30–43.

    Article  PubMed  Google Scholar 

  10. Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B. Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol. 2009;169(8):919–26.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Firestone JA, Smith-Weller T, Franklin G, Swanson P, Longstreth WT, Checkoway H. Pesticides and risk of Parkinson disease a population-based case-control study. Arch Neurol-Chicago. 2005;62(1):91–5.

    Article  PubMed  Google Scholar 

  12. Gatto NM, Cockburn M, Bronstein J, Manthripragada AD, Ritz B. Well-water consumption and Parkinson’s disease in rural California. Environ Health Perspect. 2009;117(12):1912–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kamel F, Tanner C, Umbach D, Hoppin J, Alavanja M, Blair A, et al. Pesticide exposure and self-reported Parkinson’s disease in the agricultural health study. Am J Epidemiol. 2007;165(4):364–74.

    Article  CAS  PubMed  Google Scholar 

  14. Mandel JS, Adami HO, Cole P. Paraquat and Parkinson’s disease: An overview of the epidemiology and a review of two recent studies. Regul Toxicol Pharm. 2012;62(2):385–92.

    Article  CAS  Google Scholar 

  15. Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, et al. Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect. 2011;119(6):866–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Wang A, Costello S, Cockburn M, Zhang XB, Bronstein J, Ritz B. Parkinson’s disease risk from ambient exposure to pesticides. Eur J Epidemiol. 2011;26(7):547–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Chester G, Gurunathan G, Jones N, Woollen BH. Occupational exposure of Sri Lankan tea plantation workers to paraquat. Bull World Health Organ. 1993;71(5):625–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Van Wendel de Joode BN De Graaf IAM Wesseling C Kromhout H. Paraquat exposure of Knapsack spray operators on banana plantations in Costa Rica. Int J Occup Environ Health. 1996;2(4):294–304.

    Article  Google Scholar 

  19. Dalvie MA, White N, Raine R, Myers JE, London L, Thompson M, et al. Long-term respiratory health effects of the herbicide, paraquat, among workers in the Western Cape. Occup Environ Med. 1999;56(6):391–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Machado-Neto JG, Matuo T, Matuo YK. Efficiency of safety measures applied to a manual knapsack sprayer for paraquat application to maize (Zea mays L.). Arch Environ Contam Toxicol. 1998;35(4):698–701.

    Article  CAS  PubMed  Google Scholar 

  21. Brent J, Schaeffer TH. Systematic review of parkinsonian syndromes in short- and long-term survivors of paraquat poisoning. J Occup Environ Med. 2011;53(11):1332–6.

    Article  CAS  PubMed  Google Scholar 

  22. Cicchetti F, Drouin-Ouellet J, Gross RE. Environmental toxins and Parkinson’s disease: what have we learned from pesticide-induced animal models? Trends Pharmacol Sci. 2009;30(9):475–83.

    Article  CAS  PubMed  Google Scholar 

  23. Dinis-Oliveira RJ, Duarte JA, Sanchez-Navarro A, Remiao F, Bastos ML, Carvalho F. Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment. Crit Rev Toxicol. 2008;38(1):13–71.

    Article  CAS  PubMed  Google Scholar 

  24. Cristovao AC, Choi DH, Baltazar G, Beal MF, Kim YS. The role of NADPH oxidase 1-derived reactive oxygen species in paraquat-mediated dopaminergic cell death. Antioxid Redox Sign. 2009;11(9):2105–18.

    Article  CAS  Google Scholar 

  25. Yang WS, Tiffany-Castiglioni E. The bipyridyl herbicide paraquat produces oxidative stress-mediated toxicity in human neuroblastoma SH-SY5Y cells: Relevance to the dopaminergic pathogenesis. J Toxicol Env Heal A. 2005;68(22):1939–61.

    Article  CAS  Google Scholar 

  26. Kang MJ, Gil SJ, Koh HC. Paraquat induces alternation of the dopamine catabolic pathways and glutathione levels in the substantia nigra of mice. Toxicol Lett. 2009;188(2):148–52.

    Article  CAS  PubMed  Google Scholar 

  27. McCormack AL, Atienza JG, Johnston LC, Andersen JK, Vu S, Di Monte DA. Role of oxidative stress in paraquat-induced dopaminergic cell degeneration. J Neurochem. 2005;93(4):1030–7.

    Article  CAS  PubMed  Google Scholar 

  28. Van Remmen H, Qi W, Sabia M, Freeman G, Estlack L, Yang H, et al. Multiple deficiencies in antioxidant enzymes in mice result in a compound increase in sensitivity to oxidative stress. Free Radical Bio Med. 2004;36(12):1625–34.

    Article  Google Scholar 

  29. Mockett RJ, Bayne ACV, Kwong LK, Orr WC, Sohal RS. Ectopic expression of catalase in Drosophila mitochondria increases stress resistance but not longevity. Free Radical Bio Med. 2003;34(2):207–17.

    Article  CAS  Google Scholar 

  30. Tien Nguyen-nhu N, Knoops B. Mitochondrial and cytosolic expression of human peroxiredoxin 5 in Saccharomyces cerevisiae protect yeast cells from oxidative stress induced by paraquat. Febs Lett. 2003;544(1–3):148–52.

    Article  PubMed  Google Scholar 

  31. Czerniczyniec A, Lores-Arnaiz S, Bustamante J. Mitochondrial susceptibility in a model of paraquat neurotoxicity. Free Radic Res. 2013;47(8):614–23.

    Article  CAS  PubMed  Google Scholar 

  32. Czerniczyniec A, Karadayian AG, Bustamante J, Cutrera RA, Lores-Arnaiz S. Paraquat induces behavioral changes and cortical and striatal mitochondrial dysfunction. Free Radic Biol Med. 2011;51(7):1428–36.

    Article  CAS  PubMed  Google Scholar 

  33. Cocheme HM, Murphy MP. Complex I is the major site of mitochondrial superoxide production by paraquat. J Biol Chem. 2008;283(4):1786–98.

    Article  CAS  PubMed  Google Scholar 

  34. Castello PR, Drechsel DA, Patel M. Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. J Biol Chem. 2007;282(19):14186–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Cantu D, Fulton RE, Drechsel DA, Patel M. Mitochondrial aconitase knockdown attenuates paraquat-induced dopaminergic cell death via decreased cellular metabolism and release of iron and H2O2. J Neurochem. 2011;118(1):79–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Purisai MG, McCormack AL, Cumine S, Li J, Isla MZ, Di Monte DA. Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiol Dis. 2007;25(2):392–400.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Mangano EN, Hayley S. Inflammatory priming of the substantia nigra influences the impact of later paraquat exposure: neuroimmune sensitization of neurodegeneration. Neurobiol Aging. 2009;30(9):1361–78.

    Article  CAS  PubMed  Google Scholar 

  38. Purisai MG, McCormack AL, Cumine S, Li J, Isla MZ, Di Monte DA. Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiol Dis. 2007;25(2):392–400.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Fei Q, McCormack AL, Di Monte DA, Ethell DW. Paraquat neurotoxicity is mediated by a Bak-dependent mechanism. J Biol Chem. 2008;283(6):3357–64.

    Article  CAS  PubMed  Google Scholar 

  40. Fei QY, Ethell DW. Maneb potentiates paraquat neurotoxicity by inducing key Bcl-2 family members. J Neurochem. 2008;105(6):2091–7.

    Article  CAS  PubMed  Google Scholar 

  41. Paschen W, Mengesdorf T. Endoplasmic reticulum stress response and neurodegeneration. Cell Calcium. 2005;38(3–4):409–15.

    Article  CAS  PubMed  Google Scholar 

  42. Klintworth H, Newhouse K, Li TT, Choi WS, Faigle R, Xia ZG. Activation of c-jun N-terminal protein kinase is a common mechanism underlying paraquat- and rotenone-induced dopaminergic cell apoptosis. Toxicol Sci. 2007;97(1):149–62.

    Article  CAS  PubMed  Google Scholar 

  43. Choi WS, Abel G, Klintworth H, Flavell RA, Xia Z. JNK3 mediates paraquat- and rotenone-induced dopaminergic neuron death. J Neuropathol Exp Neurol. 2010;69(5):511–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Yang W, Tiffany-Castiglioni E, Koh HC, Son IH. Paraquat activates the IRE1/ASK1/JNK cascade associated with apoptosis in human neuroblastoma SH-SY5Y cells. Toxicol Lett. 2009;191(2–3):203–10.

    Article  CAS  PubMed  Google Scholar 

  45. Yang W, Tiffany-Castiglioni E. Paraquat-induced apoptosis in human neuroblastoma SH-SY5Y cells: involvement of p53 and mitochondria. J Toxicol Env Heal A. 2008;71(4):289–99.

    Article  CAS  Google Scholar 

  46. Peng J, Mao XO, Stevenson FF, Hsu M, Andersen JK. The herbicide paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway. J Biol Chem. 2004;279(31):32626–32.

    Article  CAS  PubMed  Google Scholar 

  47. Chen YW, Yang YT, Hung DZ, Su CC, Chen KL. Paraquat induces lung alveolar epithelial cell apoptosis via Nrf-2-regulated mitochondrial dysfunction and ER stress. Arch Toxicol. 2012;86(10):1547–58.

    Article  CAS  PubMed  Google Scholar 

  48. Niso-Santano M, Bravo-San Pedro JM, Gomez-Sanchez R, Climent V, Soler G, Fuentes JM, et al. ASK1 overexpression accelerates paraquat-induced autophagy via endoplasmic reticulum stress. Toxicol Sci. 2011;119(1):156–68.

    Article  CAS  PubMed  Google Scholar 

  49. Niso-Santano M, Gonzalez-Polo RA, Bravo-San Pedro JM, Gomez-Sanchez R, Lastres-Becker I, Ortiz-Ortiz MA, et al. Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: modulation by the Nrf2/Trx axis. Free Radic Biol Med. 2010;48(10):1370–81.

    Article  CAS  PubMed  Google Scholar 

  50. Puschmann A, Bhidayasiri R, Weiner WJ. Synucleinopathies from bench to bedside. Parkinsonism Relat Disord. 2012;18(Suppl 1):S24–7.

    Article  PubMed  Google Scholar 

  51. Bellucci A, Navarria L, Zaltieri M, Missale C, Spano P. Alpha-synuclein synaptic pathology and its implications in the development of novel therapeutic approaches to cure Parkinson’s disease. Brain Research. 2012;1432:95–113.

    Article  CAS  PubMed  Google Scholar 

  52. Uversky VN, Li J, Fink AL. Pesticides directly accelerate the rate of alpha-synuclein fibril formation: a possible factor in Parkinson’s disease. Febs Lett. 2001;500(3):105–8.

    Article  CAS  PubMed  Google Scholar 

  53. Uversky VN, Li J, Bower K, Fink AL. Synergistic effects of pesticides and metals on the fibrillation of alpha-synuclein: implications for Parkinson’s disease. Neurotoxicology. 2002;23(4–5):527–36.

    Article  CAS  PubMed  Google Scholar 

  54. Feng LR, Federoff HJ, Vicini S, Maguire-Zeiss KA. alpha-Synuclein mediates alterations in membrane conductance: a potential role for alpha-synuclein oligomers in cell vulnerability. Eur J Neurosci. 2010;32(1):10–7.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Feng LR, Maguire-Zeiss KA. Dopamine and paraquat enhance alpha-synuclein-induced alterations in membrane conductance. Neurotox Res. 2011;20(4):387–401.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA. The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice—paraquat and alpha-synuclein. J Biol Chem. 2002;277(3):1641–4.

    Article  CAS  PubMed  Google Scholar 

  57. Wills J, Credle J, Oaks AW, Duka V, Lee JH, Jones J, et al. Paraquat, but not maneb, induces synucleinopathy and tauopathy in striata of mice through inhibition of proteasomal and autophagic pathways. Plos One. 2012;7(1):e30745.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Mitra S, Chakrabarti N, Bhattacharyya A. Differential regional expression patterns of alpha-synuclein, TNF-alpha, and IL-1 beta; and variable status of dopaminergic neurotoxicity in mouse brain after Paraquat treatment. J Neuroinflamm. 2011;8:163.

    Article  CAS  Google Scholar 

  59. Hoglinger GU, Lannuzel A, Khondiker ME, Michel PP, Duyckaerts C, Feger J, et al. The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. J Neurochem. 2005;95(4):930–9.

    Article  CAS  PubMed  Google Scholar 

  60. Duka T, Duka V, Joyce JN, Sidhu A. Alpha-Synuclein contributes to GSK-3 beta-catalyzed Tau phosphorylation in Parkinson’s disease models. Faseb J. 2009;23(9):2820–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Duka T, Rusnak M, Drolet RE, Duka V, Wersinger C, Goudreau JL, et al. Alpha-synuclein induces hyperphosphorylation of Tau in the MPTP model of parkinsonism. Faseb J. 2006;20(13):2302–12.

    Article  CAS  PubMed  Google Scholar 

  62. Coppede F. Genetics and epigenetics of Parkinson’s disease. ScientificWorldJournal. 2012;2012:489830.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Ebrahimi-Fakhari D, Cantuti-Castelvetri I, Fan Z, Rockenstein E, Masliah E, Hyman BT, et al. Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of alpha-synuclein. J Neurosci. 2011;31(41):14508–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006). Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006;441(7095):885–89.

    Google Scholar 

  65. Komatsu M1, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441(7095):880–84.

    Google Scholar 

  66. Bedford L1, Hay D, Devoy A, Paine S, Powe DG, Seth R, Gray T, Topham I, Fone K, Rezvani N, Mee M, Soane T, Layfield R, Sheppard PW, Ebendal T, Usoskin D, Lowe J, Mayer RJ. Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J Neurosci. 2008;28(33):8189–98.

    Google Scholar 

  67. Valente EM, Arena G, Torosantucci L, Gelmetti V. Molecular pathways in sporadic PD. Parkinsonism Relat Disord. 2012;18(Suppl 1):S71–3.

    Google Scholar 

  68. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science. 2003;299(5604):256–9.

    Article  CAS  PubMed  Google Scholar 

  69. Ariga H, Takahashi-Niki K, Kato I, Maita H, Niki T, Iguchi-Ariga SM. Neuroprotective function of DJ-1 in Parkinson’s disease. Oxid Med Cell Longev. 2013;2013:683920.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Bandopadhyay R, Kingsbury AE, Cookson MR, Reid AR, Evans IM, Hope AD, et al. The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson’s disease. Brain. 2004;127(Pt 2):420–30.

    Article  PubMed  Google Scholar 

  71. Krebiehl G, Ruckerbauer S, Burbulla LF, Kieper N, Maurer B, Waak J, et al. Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson’s disease-associated protein DJ-1. Plos One. 2010;5(2):e9367.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Thomas KJ, McCoy MK, Blackinton J, Beilina A, van der Brug M, Sandebring A, et al. DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Hum Mol Genet. 2011;20(1):40–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Gonzalez-Polo R, Niso-Santano M, Moran JM, Ortiz-Ortiz MA, Bravo-San Pedro JM, Soler G, et al. Silencing DJ-1 reveals its contribution in paraquat-induced autophagy. J Neurochem. 2009;109(3):889–98.

    Article  CAS  PubMed  Google Scholar 

  74. Yang W, Chen L, Ding Y, Zhuang X, Kang UJ. Paraquat induces dopaminergic dysfunction and proteasome impairment in DJ-1-deficient mice. Hum Mol Genet. 2007;16(23):2900–10.

    Article  CAS  PubMed  Google Scholar 

  75. Gonzalez-Polo RA, Niso-Santano M, Ortiz-Ortiz MA, Gomez-Martin A, Moran JM, Garcia-Rubio L, et al. Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells. Toxicol Sci. 2007;97(2):448–58.

    Article  CAS  PubMed  Google Scholar 

  76. Dehay B, Bove J, Rodriguez-Muela N, Perier C, Recasens A, Boya P, et al. Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci. 2010;30(37):12535–44.

    Article  CAS  PubMed  Google Scholar 

  77. Garcia-Garcia A, Anandhan A, Burns M, Chen H, Zhou Y, Franco R. Impairment of Atg5-dependent autophagic flux promotes paraquat- and MPP(+)-induced apoptosis but not rotenone or 6-hydroxydopamine toxicity. Toxicol Sci. 2013;136(1):166–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med. 2013;19(8):983–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Baltazar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baltazar, M., Dinis-Oliveira, R., Bastos, M., Carvalho, F. (2015). Paraquat: Molecular Mechanisms of Neurotoxicity and its Relation with Autophagy. In: Fuentes, J. (eds) Toxicity and Autophagy in Neurodegenerative Disorders. Current Topics in Neurotoxicity, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-13939-5_9

Download citation

Publish with us

Policies and ethics