Skip to main content

Adaptive Functions

  • Chapter
  • First Online:
Primer Effects by Murine Pheromone Signaling

Part of the book series: SpringerBriefs in Animal Sciences ((BRIEFSANIMAL))

Abstract

What is the function of primer effects? Suppression of estrous cycle when males are not around (Lee–Boot effect) and coming into estrus when females are exposed to males’ odors (Whitten effect) would be highly adaptive in reproduction. Also, being unable to establish pregnancy (Bruce effect) by exposure to unfamiliar males’ odor is also adaptive considering that there is higher risk of infanticide by the male. Enhanced neurogenesis in virgin female mice by exposure to male pheromones enabled them to distinguish and prefer dominant males than subordinate males, which would enhance reproductive success with dominant males. These studies suggest that primer effects can have high adaptive function. Studies in humans have shown possibilities that primer effects are possible in humans as well. Studies using mice as model animal may provide further insights into the possible primer effects in humans. How can we enhance our survival using odors?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aref’ev AA, Daev EV, Kaidanov LZ, Lopatina NG, Novikov SN (1985) Anomalous spermatogenesis in laboratory mice after the influence of volatile compounds contained in urine of sexually mature males. Doklady Akademii Nauk SSSR 291(5):1257–1259

    Google Scholar 

  • Chamero P, Marton TF, Logan DW, Flanagan K, Cruz JR, Saghatelian A, Cravatt BF, Stowers L (2007) Identification of protein pheromones that promote aggressive behaviour.  Nature 450(7171):899–902

    Google Scholar 

  • Ferrero DM, Moeller LM, Osakada T, Horio N, Li Q, Roy, DS, Cichy A, Spehr M, Touhara K, Liberles SD (2013) A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system. Nature 502:368–371

    Google Scholar 

  • Haga S, Hattori T, Sato T, Sato K, Matsuda S, Kobayakawa R, Sakano H, Yoshihara Y, Kikusui T, Touhara K (2010) The male mouse pheromone ESP1 enhances female sexual receptive behavior through a specific vomeronasal receptor. Nature 466:118–122

    Google Scholar 

  • Ishii T, Mombaerts P (2008) Expression of nonclassical class I major histocompatibility genes defines a tripartite organization of the mouse vomeronasal system. J Neurosci 28(10):2332–2341

    Google Scholar 

  • Jemiolo B, Harvey S, Novotny M (1986) Promotion of the Whitten effect in female mice by synthetic analogues of male urinary constituents. Proc Natl Acad Sci USA 83:4576–4579

    Google Scholar 

  • Jemiolo B, Novotny M (1994) Inhibition of sexual maturation in juvenile female and male mice by a chemosignal of female origin. Physiol Behav 55(3):519–522

    Google Scholar 

  • Kelliher KR, Spehr M, Li X-H, Zufall F, Leinders-Zufall T (2006) Pheromonal recognition memory induced by TRPC2-independent vomeronasal sensing. Eur J Neurosci 23:3385–3390

    Google Scholar 

  • Kimoto H, Haga S, Sato K, Touhara K (2005) Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature 437:898–901

    Google Scholar 

  • Koyama S, Kamimura S (1999) Lowered sperm motility in mice of subordinate social status. Physiol Behav 65:665–669

    Google Scholar 

  • Koyama S, Kamimura S (2000) Influence of social dominance and female odour on the sperm activity of male mice. Physiol Behav 71:415–422

    Google Scholar 

  • Koyama S, Soini HA, Foley J, Novotny MV, Lai C (2013) Stimulation of cell proliferation in the subventricular zone by synthetic murine pheromones. Front Behav Neurosci. doi:10.3389/fnbeh.2013.00101 eCollection 2013

  • Koyama S, Soini HA, Foley J, Novotny MV, Lai C (2014) Pheromone-induced cell proliferation in the murine subventricular zone. Biochem Soc Trans 42(4):882–885

    Article  CAS  PubMed  Google Scholar 

  • Koyama S, Soini HA, Wager-Miller J, Alley WR, Pizzo MJ, Rodda C, Alberts J, Crystal JD, Lai C, Foley J, Novotny MV (2015) Cross-generational Impact of a Male Murine Pheromone 2-sec-butyl-4,5-dihydrothiazole in Female Mice. Proc Biol Sci. 282(1811) doi:10.1098/rspb.2015.1074 PMID: 26136453 http://dx.doi.org/10.1098/rspb.2015.1074

  • Leinders-Zufall T, Brennan P, Widmayer P, Chandramani P, Maul-Pavicic A, Jager M, Li X-H, Breer, H, Zufall F, Boehm T (2004) MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 306:1033–1037

    Google Scholar 

  • Ma W, Miao Z, Novotny MV (1998) Role of the adrenal gland and adrenal—mediated chemosignals in suppression of estrus in the house mouse: the Lee–Boot effect revisited. Biol Reprod 59:1317–1320

    Google Scholar 

  • Ma W, Miao Z, Novotny MV (1999) Induction of estrus in grouped female mice (Mus domesticus) by synthetic analogues of preputial gland constituents. Chem Senses 24:289–293

    Google Scholar 

  • Mak GK, Enwere EK, Gregg C, Pakarainen T, Poutanen M, Huhtaniemi I, Weiss S (2007) Male pheromone—stimulated neurogenesis in the adult female brain: possible role in mating behavior. Nat Neurosci 10:1003–1011

    Google Scholar 

  • McClintock MK (1971) Menstrual Synchrony and Suppression. Nature 229:244–245

    Article  CAS  PubMed  Google Scholar 

  • Novikov SN, Tsapygina RI, Daev EV, Togo EF (1981) Influenc of natural compounds of biogenic origin on behavior and reproductive function in the male house mouse Mus musculus. Doklady Akademii Nauk SSSR 262(3):746–748

    Google Scholar 

  • Novikov SN, Daev EV, Tsapygina RI (1984) Action of volatile urine components on the generative function of non-sexually mature males of the house mouse Mus musculus L. Doklady Akademii Nauk SSSR 281(6):1506–1508

    Google Scholar 

  • Novotny M, Harvey S, Jemiolo B, Alberts J (1985) Synthetic pheromones that promote inter-male aggression in mice. Proc Natl Acad Sci USA 82:2059–2061

    Google Scholar 

  • Novotny MV, Ma W, Wiesler D, Zidek I (1999) Positive identification of the puberty-accelerating pheromone of house mouse: the volatile ligands associating with the major urinary protein.  Proc R Soc Lond B 266:2017–2022

    Google Scholar 

  • Oboti L, Savalli G, Giachino C, De Marchis S, Panzica GC, Fasolo A, Peretto P (2009) Integration and sensory experience-dependent survival of newly-generated neurons in the accessory olfactory bulb of female mice. Eur J Neurosci 29:679–692

    Google Scholar 

  • Oboti L, Schellino R, Giachino C, Chamero P, Pyrski M, Leinders-Zufall T, Zufall F, Fasolo A, Peretto P (2011) Newborn interneurons in the accessory olfactory bulb promote mate recognition in female mice. Front Neurosci 5:113. doi:10.3389/fnins.2011.00113

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts SA, Simpson DM, Armstrong SD, Davidson AJ, Robertson DH, McLean L, Beynon RJ, Hurst JL (2010) Darcin: a male pheromone that stimulates female memory and sexual attraction to an individual male’s odour. BMC Biol Jun 3;8:75. doi:10.1186/1741-7007-8-75    

    Google Scholar 

  • Savic I, Berglund H (2010) Androstenol—a steroid derived odor activates the hypothalamus in women. PLoS ONE 5(2):e8651. doi:10.1371/journal.pone.0008651

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith TD, Laitman JT, Bhatnagar KP (2014) The shrinking anthropoid nose, the human vomeronasal organ, and the language of anatomical reduction. Anat Rec 297:2196–2204

    Article  Google Scholar 

  • Stern K, McClintock MK (1998) Regulation of ovulation by human pheromones. Nature 392:177–179

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama Y. (1993) 子殺しの行動学 講談社学術文庫1057. 講談社, 東京

    Google Scholar 

  • Wu Z, Autry AE, Bergen JF, Watabe-Uchida M, Dulac CG (2014) Galanin neurons in the medial preoptic area govern parental behavior. Nature 509(7500):325–330

    Google Scholar 

  • Yoon H, Enquist LW, Dulac C (2005) Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell 123:669–682

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachiko Koyama .

Appendix

Appendix

Table A.1 List of mouse releaser effects and primer effects

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Koyama, S. (2016). Adaptive Functions. In: Primer Effects by Murine Pheromone Signaling. SpringerBriefs in Animal Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-13933-3_7

Download citation

Publish with us

Policies and ethics