Skip to main content

The Olfactory Systems

  • Chapter
  • First Online:
Primer Effects by Murine Pheromone Signaling

Part of the book series: SpringerBriefs in Animal Sciences ((BRIEFSANIMAL))

  • 271 Accesses

Abstract

The 1990s became the decade that olfactory neuroscience showed extraordinary development. Now we have much better understanding of how we distinguish various odors and how the signaling pathways are in the brain. We also know that the olfactory system is not a single system but it is a group of systems in the nasal cavity that respond to chemical compounds. It has been believed for decades that pheromones are received at the vomeronasal organ and the signaling pathway from there reaches to hypothalamus and activates GnRH neurons, however, recent studies have determined that the pathway that reaches to GnRH neurons starts from the main olfactory epithelium. There are pheromones that have receptors in the accessory olfactory system releasing behaviors. The responses to odors/pheromones are not always the same but they change at the sensory neuron level and these changes are regulated by hormones. It is a chemical signaling process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baum MJ (2012) Contribution of pheromones processed by the main olfactory system to mate recognition in female mammals. Front Neuroanat 6. doi:10.3389/fnana.2012.00020

  • Baum MJ, Kelliher KR (2009) Complementary roles of the main and accessory olfactory systems in mammalian mate recognition. Annu Rev Phys 71:141–160. doi:10.1146/annurev.physiol.010908.163137

    Article  CAS  Google Scholar 

  • Baum MJ, Cherry JA (2014) Processing by the main olfactory system of chemosignals that facilitate mammalian reproduction. Horm Behav 68:53–64

    Article  PubMed  Google Scholar 

  • Boehm U, Zou Z, Buck LB (2005) Feedback loops link odor and pheromone signaling with reproduction. Cell 123:683–695

    Article  CAS  PubMed  Google Scholar 

  • Breer H, Fleischer J, Strotmann J (2006) The sense of smell: multiple olfactory subsystems. Cell Mol Life Sci 63:1465–1475

    Article  CAS  PubMed  Google Scholar 

  • Brennan PA, Zufall F (2006) Pheromonal communication in vertebrates. Nature 444:308–315

    Article  CAS  PubMed  Google Scholar 

  • Breunig E, Manzini I, Pischitelli F, Gutermann B, Di Marzo V, Schild D, Szesnik D (2010) The endocannabinoid 2-arachidonoyl-glycerol controls odor sensitivity in larvae of enopus laevis. J Neurosci 30(26):8965–8973

    Article  CAS  PubMed  Google Scholar 

  • Buck L, Axel RA (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  CAS  PubMed  Google Scholar 

  • Buck L (2000) The molecular architecture of odor and pheromone sensing in mammals. Cell 100:611–618

    Article  CAS  PubMed  Google Scholar 

  • Chamero P, Marton TF, Logan DW, Flanagan K, Cruz JR, Saghatelian A, Cravatt BF, Stowers L (2007) Identification of protein pheromones that promote aggressive behaviour. Nature 450:899–902

    Article  CAS  PubMed  Google Scholar 

  • Dey S, Chamero P, Pru JK, Chien MS, Ibarra-Soria X, Spencer KR, Logan DW, Matsunami H, Peluso JJ, Stowers L (2015) Cyclic regulation of sensory perception by a female hormone alters behavior. Cell 16(6):1334–1344

    Article  Google Scholar 

  • Dulac C, Axel R (1995) A novel family of genes encoding putative pheromone receptors in mammals. Cell 83:195–206

    Article  CAS  PubMed  Google Scholar 

  • Dulac C, Wagner S (2006) Genetic analysis of brain circuits underlying pheromone signaling. Annu Rev Genet 40:449–467

    Article  CAS  PubMed  Google Scholar 

  • Fleischer J, Breer H, Strotmann J (2009) Mammalian olfactory receptors. Front Cell Neuroci 3 (article 9)

    Google Scholar 

  • Haga S, Hattori T, Sato T, Sato K, Matsuda S, Kobayakawa R, Sakano H, Yoshihara Y, Kikusui T, Touhara K (2010) The male mouse pheromone ESP1 enhances female sexual receptive behavior through a specific vomeronasal receptor. Nature 466:118–122

    Article  CAS  PubMed  Google Scholar 

  • Halem A, Cherry JA, Baum MJ (1999) Vomeronasal neuroepithelium ad forebrain fos responses to male pheromones in male and female mice. J Neurobiol 39(2):249–263

    Article  CAS  PubMed  Google Scholar 

  • Hurst JL, Beynon RJ (2004) Scent wars: the chemobiology of competitive signaling in mice. BioEssays 26(12):1288–1298

    Article  CAS  PubMed  Google Scholar 

  • Inui A, Asakawa A, Bowers CY, Mantovani G, Laviano A, Meguid MM, Fujimiya M (2004) Ghrelin, appetite, and gastric motility: the emerging role of the stomach as an endocrine organ. The FASEB J. 18:439–456 

    Article  CAS  PubMed  Google Scholar 

  • Jemiolo B, Harvey S, Novotny M (1986) Promotion of the Whitten effect in female mice by synthetic analogues of male urinary constituents. Proc Natl Acad Sci USA 83:4576–4579

    Google Scholar 

  • Kang N, Baum MJ, Cherry JA (2009) A direct main olfactory bulb projection to the ‘vomeronasal’ amygdala in female mice selectively responds to volatile pheromones from males. Eur J Neurosci 29:624–634

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimoto H, Haga S, Sato K, Touhara K (2005) Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature 437:898–901

    Article  CAS  PubMed  Google Scholar 

  • Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature (London) 402:656–660

    Article  CAS  Google Scholar 

  • Koyama S, Kamimura S (1999) Lowered sperm motility in mice of subordinate social status. Phys Behav 65:665–669

    Article  CAS  Google Scholar 

  • Koyama S, Kamimura S (2003) Effects of vomeronasal organ removal on the sperm motility in male mice. Zool Sci 20:1355–1358

    Article  PubMed  Google Scholar 

  • Koyama S, Soini HA, Foley J, Novotny MV, Lai C (2013) Stimulation of cell proliferation in the subventricular zone by synthetic murine pheromones. Front Behav Neurosci. doi:10.3389/fnbeh.2013.00101eCollection

  • Koyama S, Soini HA, Foley J, Novotny MV, Lai C (2014) Pheromone-induced cell proliferation in the murine subventricular zone. Biochem Soc Trans 42(4):882–885

    Article  CAS  PubMed  Google Scholar 

  • Lee S, van der Boot LM (1955) Spontaneous pseudopregnancy in mice. Acta Phys Pharmacol Neerl 4:442–443

    Google Scholar 

  • Lee S, van der Boot LM (1956) Spontaneous pseudopregnancy in mice II. Acta Phys Pharmacol Neerl 5:213–214

    Google Scholar 

  • Loch D, Breer H, Strotmann J (2015) Endocrine modulation of olfactory responsiveness: effects of the orexigenic hormone ghrelin. Senses, Chem. doi:10.1093/chemse/bjv028

    Google Scholar 

  • Ma W, Miao Z, Novotny MV (1998) Role of the adrenal gland and adrenal—mediated chemosignals in suppression of estrus in the house mouse: the Lee-Boot effect revisited. Biol Reprod 59:1317–1320

    Article  CAS  PubMed  Google Scholar 

  • Martel KL, Baum MJ (2007) Sexually dimorphic activation of the accessory, but not the main, olfactory bulb in mice by urinary volatiles. Eur J Neurosci 26(2):463–475

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsunami H, Buck LB (1997) A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90:775–784

    Article  CAS  PubMed  Google Scholar 

  • Papes F, Logan DW, Stowers L (2010) The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141(4):692–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez I, Boehm U (2008) Pheromone sensing in mice. Results Probl Cell Differ 77–96. doi:10.1007/400_2008_8

    Google Scholar 

  • Sakata I, Sakai T (2010) Ghrelin cells in the gastrointestinal tract. Int J Pept 2010 (Article ID 945056)

    Google Scholar 

  • Sharrow SD, Vaughn JL, Zidek L, Novotny MV, Stone MJ (2002) Pheromone binding by polymorphic mouse major urinary proteins. Protein Sci 11(9):2247–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spehr M, Spehr J, Ukhanov K, Kelliher KR, Leinders-Zufall T, Zufall F (2006) Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cell Mol Life Sci 63:1476–1484

    Article  CAS  PubMed  Google Scholar 

  • Sullivan SL (2002) Mammalian chemosensory receptors. NeuroReport 13:A9–A17

    Article  PubMed  Google Scholar 

  • Tirindelli R, Dibattista M, Pifferi S, Menni A (2009) From pheromones to behavior. Physiol Rev 80:921–956

    Article  Google Scholar 

  • Von Campenhausen H, Mori K (2000) Convergence of segregated pheromonal pathways from the accessory olfactory bulb to the cortex in the mouse. Eur J Neurosci 12:33–46

    Article  Google Scholar 

  • Walia P, Asaki A, Kieffer TJ, Johnson JD, Chanoine J-D (2009) Ontogeny of ghrelin, obestatin, preproghrelin, and prohormone convertases in rat pancreas and stomach. Ped Res 65:39–44

    Article  CAS  Google Scholar 

  • Xu F, Schaefer M, Kida I, Liu N, Rothman DL, Hyder F, Restrepo D, Shepherd GM (2005) Simultaneous activation of mouse main and accessory olfactory bulbs by odors or pheromones. J Comp Neurol 489(4):491–500

    Article  PubMed  Google Scholar 

  • Yoon H, Enquist LW, Dulac C (2005) Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell 123:669–682

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nat Neurosci 5(2):124–133

    CAS  PubMed  Google Scholar 

  • Zidek L, Stone MJ, Lato SM, Pagel MD, Miao Z, Ellington AD, Novotny MV (1999) NMR mapping of the recombinant mouse major urinary protein I binding site occupied by the pheromone 2-sec-butyl-4,5-dihydrothiazole. Biochemistry 38(31):9850–9861

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachiko Koyama .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Koyama, S. (2016). The Olfactory Systems. In: Primer Effects by Murine Pheromone Signaling. SpringerBriefs in Animal Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-13933-3_2

Download citation

Publish with us

Policies and ethics