Skip to main content

CO2BioPerm—Influence of Bio-geochemical CO2-Transformation Processes on the Long-Term Permeability

  • Chapter
  • First Online:
Geological Storage of CO2 – Long Term Security Aspects

Abstract

The RECOBIO projects (Hoth et al. in Recycling of sequestrated CO2 by microbial—biogeochemical transformation in the deep subsurface—RECOBIO 2009a; Geotechnol Sci Rep 14:58–65, 2009b; Untersuchung der biogeochemischen transformation von im tiefen Untergrund gespeichertem CO2—RECOBIO 2 2011) have shown the relevance of biogeochemical processes, related to CO2 injection. These processes represent an additional pathway for biogeochemical CO2 storage. The main result was the microbial transformation (binding) of injected CO2 (formation of organic compounds). This can also influence the pressure behaviour of the system. Furthermore the organic layers can act as nucleation sites and so catalyse the carbonate solid formation. So the main focus of the CO2BIOPERM project was now to investigate the influence of these processes on the permeability behaviour of the system. Furthermore other aquifer structures, not related to natural gas fields, were characterised by microbiological, molecular genetic investigations. The biocenosis is also often dominated, like in natural gas fields, by sulphate reducers and fermenting bacteria. The study of CO2 effects to the cultivation of microorganisms showed for deep aquifer microorganisms a strategy to survive the CO2 stress by spore forming. The proteomic analysis gave a first view how many and which proteins were down and up regulated under CO2 stress. A part of the flow experiments, which were operated in discontinuously flowed batch mode, are presented in detail. There is no strong influence of the processes on the permeability behaviour for high permeable reservoir sandstones. Nevertheless the sequential extractions on the solid materials, after the tests, underline the ongoing biogeochemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    TRFLP—Terminal Restriction Fragment Length Polymorphism, a molecular-genetic method.

References

  • Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, DeSantis TZ, Gihring TM, Lapidus A, Lin LH, Lowry SR, Moser DP, Richardson PM, Southam G, Wanger G, Pratt LM, Andersen GL, Hazen TC, Brockman FJ, Arkin AP, Onstott TC (2008) Environmental genomics reveals a single-species ecosystem deep within earth. Science 322(5899):275–278

    Article  Google Scholar 

  • Davey ME, Macgregor BJ, Stahl DA (2001) Genus IV. Petrotoga. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology. The Archaea and the deeply branching and phototrophic Bacteria, vol 1. Springer, New York, pp 382–385

    Google Scholar 

  • Davidova IA, Gieg LM, Duncan KE, Suflita JM (2007) Anaerobic phenanthrene mineralization by a carboxylating sulfate-reducing bacterial enrichment. ISME J 1(5):436–442

    Article  Google Scholar 

  • Ehinger S, Seifert J, Kassahun A, Schmalz L, Hoth N, Schlömann M (2009) Predominance of methanolobus spp. and methanoculleus spp. in the archaeal communities of saline gas field formation fluids. Geomicrobiol J 26:326–338

    Article  Google Scholar 

  • Foght J (2008) Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Microbiol Biotechnol 15(2–3):93–120

    Article  Google Scholar 

  • Frei J et al (1986) “Chemisch und mikrobiologisch bedingte Gasverluste am UGS Ketzin”. Report of a research project, Brennstoffinstitut, Freiberg

    Google Scholar 

  • Gieg LM, Davidova IA, Duncan KE, Suflita JM (2010) Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environ Microbiol 12(11):3074–3086

    Article  Google Scholar 

  • Gniese C, Bombach P, Rakoczy J, Hoth N, Schlömann M, Richnow HH, Krüger M (2013) Relevance of deep-subsurface microbiology for underground gas storage and geothermal energy production. Adv Biochem Eng Biotechnol doi:10.1007/10_2013_257

  • Graupner T, Kassahun A, Rammlmair D, Meima JA, Kock D, Furche M, Fiege A, Schippers A, Melcher F (2007) Formation of sequences of cemented layers and hardpans within sulfide-bearing mine tailings mine district Freiberg, Germany. Appl Geochem 22:2486–2508

    Article  Google Scholar 

  • Hendry P (2006) Extremophiles: there’s more to life. Environ Chem 3:75–76

    Article  Google Scholar 

  • Hoth N, Kassahun A, Ehinger S, Muschalle T, Seifert J, Schlömann M, Häfner F (2009a) Recycling of sequestrated CO2 by microbial—biogeochemical transformation in the deep subsurface—RECOBIO. Final report, BMBF-funded research, FKZ 03G0616A and 03G0616C

    Google Scholar 

  • Hoth N, Kassahun A, Ehinger S, Würdemann H (2009b) Biogeochemische Wechselwirkungen—langfristige mikrobielle Umwandlung des gespeicherten CO2. Geotechnol Sci Rep 14:58–65

    Google Scholar 

  • Hoth N, Kassahun A, Krüger M, Gniese C, Frerichs J, Muschalle T, Schlömann M, Reich M (2011) Untersuchung der biogeochemischen transformation von im tiefen Untergrund gespeichertem CO2—RECOBIO 2. Final report, BMBF-funded research, FKZ 03G0696A, 03G0697A and 03G0616C

    Google Scholar 

  • L’Haridon S, Reysenbacht A-L, Glenatt P, Prieur D, Jeanthon C (1995) Hot subterranean biosphere in a continental oil reservoir. Nature 377:323–324

    Article  Google Scholar 

  • Lovley DR, Chapelle FH (1995) Deep subsurface microbial processes. Rev Geophys 33(3):365–381

    Article  Google Scholar 

  • Maune MW, Tanner RS (2012) Description of Anaerobaculum hydrogeniformans sp. nov., an anaerobe that produces hydrogen from glucose, and emended description of the genus Anaerobaculum. Int J Syst Evol Microbiol 62(Pt 4):832–838

    Article  Google Scholar 

  • Rao CRM, Sahuquillo A, Lopez Sanchez JF (2008) A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water Air Soil Poll 189:291–333

    Article  Google Scholar 

  • Smigan P, Greksak M, Kozankova J, Buzek F, Onderka V, Wolf I (1990) Methanogenic bacteria as a key factor involved in changes of town gas stored in an underground reservoir. FEMS Microbiol Ecol 73:221–224

    Article  Google Scholar 

  • Vogt C, Kleinsteuber S, Richnow HH (2011) Anaerobic benzene degradation by bacteria. Microb Biotechnol 4(6):710–724

    Article  Google Scholar 

  • Wagner ID, Zhao W, Zhang CL, Romanek CS, Rohde M, Wiegel J (2008) Thermoanaerobacter uzonensis sp. nov., an anaerobic thermophilic bacterium isolated from a hot spring within the Uzon Caldera, Kamchatka, Far East Russia. Int J Syst Evol Microbiol 58(11):2565–2573

    Article  Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12(3):259–276

    Article  Google Scholar 

  • Zeien H (1995) Chemische Extraktionen zur Bestimmung der Bindungsformen von Schwermetallen in Böden. Bonner Bodenkundl. Abh, 17

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the German Federal Ministry of education and Research for funding, Grant numbers 03G0781 A to D and 03G0782.

Furthermore many thanks to the team of Sonja Martens at GFZ Potsdam for providing us core material of the Ketzin site for the discontinuous flow experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Hoth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hoth, N. et al. (2015). CO2BioPerm—Influence of Bio-geochemical CO2-Transformation Processes on the Long-Term Permeability. In: Liebscher, A., Münch, U. (eds) Geological Storage of CO2 – Long Term Security Aspects. Advanced Technologies in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-13930-2_4

Download citation

Publish with us

Policies and ethics