Skip to main content

Modulating Phytohormone Levels

  • Chapter
  • First Online:
Beneficial Plant-Bacterial Interactions

Abstract

Most, if not all, of the physiological activity of a plant is regulated by one or more plant hormones (phytohormones) including auxin, cytokinin, gibberellin, abscisic acid, ethylene, salicylic acid, jasmonic acid, and brassinosteroids. In addition to plants, many soil bacteria are also capable of synthesizing and/or modulating the level of some of these hormones including auxin, cytokinin, gibberellin, and ethylene (Fig. 3.1). It should be emphasized here that phytohormones are not nutrients, but rather are chemicals that are typically present in plants in very low concentrations and promote and influence the growth, development, and differentiation of plant cells and tissues. Phytohormones help plants to adjust their growth rates and patterns in response to a wide range of environmental and developmental conditions. By modulating different aspects of a plant’s environmental and developmental responses, phytohormones turn on (or off) various plant genes that ultimately help to optimize a plant’s growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology. Academic Press, New York

    Google Scholar 

  • Ahmed A, Hasnain S (2010) Auxin-producing Bacillus sp.: auxin quantification and effect on the growth of solanum tuberosum. Pure Appl Chem 82:313–319

    Article  CAS  Google Scholar 

  • Arkhipova TM, Veselo SU, Melentiev AI, Martynenko EV, Kudoyarova GR (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209

    Article  CAS  Google Scholar 

  • Arshad M, Frankenberger WT Jr (2002) Ethylene: agricultural sources and applications. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  • Baudoin E, Lerner A, Mirza MS, El Zemrany H, Prigent-Combaret C, Jurkevich E, Spaepen S, Vanderleyden J, Nazaret S, Okon Y, Moenne-Loccoz Y (2010) Effects of Azospirillum brasilense with genetically modified auxin biosynthesis gene ipdC upon the diversity of the indigenous microbiota of the wheat rhizosphere. Res Microbiol 161:219–226

    Article  CAS  PubMed  Google Scholar 

  • Bianco C, Defez R (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76:4626–4632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bianco C, Imperlini E, Calogero R, Senatore B, Amoresano A, Carpentieri A, Pucci P, Defez R (2006) Indole-3-acetic acid improves Escherichia coli’s defences to stress. Arch Microbiol 185:373–382

    Article  CAS  PubMed  Google Scholar 

  • Bianco C, Imperlini E, Defez R (2009) Legumes like more IAA. Plant Signaling Behav 4:763–765

    Article  CAS  Google Scholar 

  • Bianco C, Senatore B, Arbucci S, Pieraccini G, Defez R (2014) Modulation of endogenous indole-3-acetic acid biosynthesis in bacteroids within Medicago sativa nodules. Appl Environ Microbiol 80:4286–4293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18

    Article  PubMed  Google Scholar 

  • Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Microbial indole-3-acetic acid and plant growth. Anton Van Leeuwenhoek 106:85–125

    Article  CAS  Google Scholar 

  • Frankenberger WT, Arshad M (1995) Auxins. In: Frankenberger WT, Arshad M (eds) Phytohormones in soils microbial production and function. Marcel Dekker, New York, pp 17–136

    Google Scholar 

  • Gamalero E, Glick BR (2011) Mechanisms used by plant growth-promoting bacteria. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, pp 17–46

    Chapter  Google Scholar 

  • Gamalero E, Glick BR (2012) Ethylene and abiotic stress tolerance in plants. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, Berlin, pp 395–412

    Chapter  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Grossmann K (2010) Auxin herbicides: current status of mechanism and mode of action. Pest Manage Sci 66:113–120

    CAS  Google Scholar 

  • Hershey DM, Lu X, Zi J, Peters RJ (2014) Functional conservation of the capacity for ent-kaurene biosynthesis and an associated operon in certain rhizobia. J Bacteriol 196:100–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hussain A, Hasnain S (2009) Cytokinin production by some bacteria: its impact on cell division in cucumber cotyledons. Afr J Microbiol Res 3:704–712

    CAS  Google Scholar 

  • Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant-Microbe Interac 20:619–626

    Article  CAS  Google Scholar 

  • Imperlini E, Bianco C, Lonardo E, Camerini S, Cermola M, Moschetti G, Defez R (2009) Effects of indole-3-acetic acid on Sinorhizoboium meliloti survival and on symbiotic nitrogen fixation and stem dry weight production. Appl Microbiol Biotechnol 83:727–738

    Article  CAS  PubMed  Google Scholar 

  • Kazan K, Manners JM (2009) Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci 14:373–382

    Article  CAS  PubMed  Google Scholar 

  • Khandelwal A, Sindhu SS (2013) ACC deaminase containing rhizobacteria enhance nodulation and plant growth in Clusterbean (Cyamopsis tetragonoloba L.). J Microbiol Res 3:117–123

    Google Scholar 

  • Malhotra M, Srivastava S (2008) An ipdC gene knock-out of Azospirillum brasilense strain SM and its implications on indole-3-acetic acid biosynthesis and plant growth promotion. Anton van Leeuwenhoek 93:425–433

    Article  CAS  Google Scholar 

  • Nukui N, Minamisawa K, Ayabe SI, Aoki T (2006) Expression of the 1-aminocyclopropane-1-carboxylic acid deaminase gene requires symbiotic nitrogen-fixing regulator gene nifA2 in Mesorhizobium loti MAFF303099. Appl Environ Microbiol 72:4964–4969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Onofre-Lemus J, Hernandez-Lucas I, Girard L, Caballero-Mellado J (2009) ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 75:6581–6590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patten CL, Blakney AJC, Coulson TJD (2013) Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit Rev Microbiol 39:395–415

    Article  CAS  PubMed  Google Scholar 

  • Patten C, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002a) The role of bacterial indoleacetic acid in the development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002b) Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary phase sigma factor RpoS. Can J Microbiol 48:635–642

    Article  CAS  PubMed  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci (USA) 100:4927–4932

    Article  CAS  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ryu RJ, Patten CL (2008) Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by tyrR in Enterobacter cloacae UW5. Bacteriol 190:7200–7208

    Article  CAS  Google Scholar 

  • Saleh SS, Glick BR (2001) Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and UW4. Can J Microbiol 47:698–705

    Article  CAS  PubMed  Google Scholar 

  • Santoro MV, Zygadlo J, Giordano W, Banchio E (2011) Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol Biochem 49:1177–1182

    Article  CAS  PubMed  Google Scholar 

  • Sugawara M, Okazaki S, Nukui N, Ezura H, Mitsui H, Minamisawa K (2006) Rhizobitoxine modulates plant–microbe interactions by ethylene inhibition. Biotechnol Adv 24:382–388

    Article  CAS  PubMed  Google Scholar 

  • Tanimoto E (2012) Tall or short? Slender or thick? A plant strategy for regulating elongation growth of roots by low concentrations of gibberellin. Annals Bot 110:373–381

    Article  CAS  Google Scholar 

  • Tittabutr P, Awaya JD, Li QX, Borthakur D (2008) The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala. Syst Appl Microbiol 31:141–150

    Article  CAS  PubMed  Google Scholar 

  • Tromas A, Perrot-Rechenmann C (2010) Recent progress in auxin biology. C R Biol 333:297–306

    Article  CAS  PubMed  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:89–155

    Article  Google Scholar 

  • Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu C-M, Allen R, Melo IS, Pare PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Plant 226:839–851

    Article  CAS  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard R. Glick .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glick, B.R. (2015). Modulating Phytohormone Levels. In: Beneficial Plant-Bacterial Interactions. Springer, Cham. https://doi.org/10.1007/978-3-319-13921-0_3

Download citation

Publish with us

Policies and ethics