Skip to main content

Resource Acquisition

  • Chapter
  • First Online:
Beneficial Plant-Bacterial Interactions

Abstract

To grow, both plants and bacteria utilize nutrients that are mainly acquired from the soil environment. In addition to small amounts of a number of different metals, plants and bacteria require fixed nitrogen, iron, and phosphorus. In this chapter, the mechanisms and genes involved in PGPB and plant resource acquisition are discussed in some detail. In fact, one of the major benefits that PGPB provide to their plant partners is that they facilitate the plant’s acquisition of resources from the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Adams MWW, Mortenson LE, Chen JS (1981) Hydrogenase. Biochim Biophys Acta 594:105–176

    Article  Google Scholar 

  • Ahmad E, Khan MS, Zaidi A (2013) ACC deaminase producing Pseudomonas putida strain PSE3 and Rhizobium leguminosarum strain RP2 in synergism improves growth, nodulation and yield of pea grown in alluvial soils. Symbiosis 61:93–104

    Article  CAS  Google Scholar 

  • Albrecht SL, Maier RJ, Hanus FJ, Russell SA, Emerich DW, Evans HJ (1979) Hydrogenase in Rhizobium japonicum increases nitrogen fixation by nodulated soybeans. Science 203:1255–1257

    Article  CAS  PubMed  Google Scholar 

  • Brito B, Palacios JM, Imperial J, Ruiz-Argüeso T (2002) Engineering the Rhizobium leguminosarum bv. viciae hydrogenase system for expression in free-living microaerobic cells and increased hydrogenase activity. Appl Environ Microbiol 68:2461–2467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brito B, Toffanin A, Prieto R-I, Imperial J, Ruiz-Argüeso T, Palacios JM (2008) Host-dependent expression of Rhizobium leguminosarum bv. viciae hydrogenase is controlled at transcriptional and post-transcriptional levels in legume nodules. Molec Plant Microbe Interact 21:597–604

    Article  CAS  Google Scholar 

  • Cantrell MA, Haugland RA, Evans HJ (1983) Construction of a Rhizobium japonicum gene bank and use in isolation of a hydrogen uptake gene. Proc Natl Acad Sci USA 80:181–185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chaurasia AK, Apte SK (2011) Improved eco-friendly recombinant Anabaena sp. strain PCC7120 with enhanced nitrogen biofertilizer potential. Appl Environ Microbiol 77:395–399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng Q (2008) Perspectives in biological nitrogen fixation. J Integrat Plant Biol 50:784–796

    Google Scholar 

  • Duan J, Müller KM, Charles TC, Vesely S, Glick BR (2009) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in Rhizobia from southern Saskatchewan. Microb Ecol 57:423–436

    Article  CAS  PubMed  Google Scholar 

  • Evans HJ, Harker AR, Papen H, Russell SA, Hanus FJ, Zuber M (1987) Physiology, bio-chemistry, and genetics of the uptake hydrogenase in rhizobia. Annu Rev Microbiol 41:335–361

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Valiente E, Quesada A (2004) A shallow water ecosystem: rice fields. The relevance of cyanobacteria in the ecosystem. Limnetica 23:95–108

    Google Scholar 

  • Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) (1990) Nitrogen fixation: achievements and objectives. Chapman and Hall, New York

    Google Scholar 

  • Hennecke H (1990) Nitrogen fixation genes involved in the Bradyrhizobium japonicum-soybean symbiosis. FEBS Lett 268:422–426

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Ahmad E, Zaidi A, Oves M (2013) Functional aspect of phosphate-solubilizing bacteria: importance in crop production. In: Maheshwari DK, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin and Heidelberg, pp 237–263

    Chapter  Google Scholar 

  • Lemanceau P, Bauer P, Kraemer S, Briat J-F (2009) Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes. Plant Soil 321:513–535

    Article  CAS  Google Scholar 

  • Long SR, Buikema WJ, Ausubel FM (1982) Cloning of Rhizobium meliloti nodulation genes by direct complementation of Nod− mutants. Nature 298:485–488

    Article  CAS  Google Scholar 

  • Ma W, Guinel FC, Glick BR (2003a) The Rhizobium leguminosarum bv. viciae ACC deaminase protein promotes the nodulation of pea plants. Appl Environ Microbiol 69:4396–4402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma W, Sebestianova S, Sebestian J, Burd GI, Guinel F, Glick BR (2003b) Prevalence of 1-aminocyclopropaqne-1-carboxylate in deaminase in Rhizobia spp. Anton. Van Leeuwenhoek 83:285–291

    Article  CAS  Google Scholar 

  • Ma W, Charles TC, Glick BR (2004) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70:5891–5897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maier RJ, Triplett EW (1996) Toward more productive, efficient, and competitive nitrogen-fixing symbiotic bacteria. Crit Rev Plant Sci 15:191–234

    Article  Google Scholar 

  • Marroquí S, Zorreguieta A, Santamaría C, Temprano F, Soberón M, Megías M, Downie JA (2001) Enhanced symbiotic performance by Rhizobium tropici glycogen synthase mutants. J Bacteriol 183:854–864

    Article  PubMed Central  PubMed  Google Scholar 

  • Marugg JD, van Spanje M, Hoekstra WPM, Schippers B, Weisbeek PJ (1985) Isolation and analysis of genes involved in siderophore biosynthesis in plant-growth-stimulating Pseudomonas putida WCS358. J Bacteriol 164:563–570

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marugg JD, Nielander HB, Horrevoets AJG, van Megen I, van Genderen I, Weisbeek PJ (1988) Genetic organization and transcriptional analysis of a major gene cluster involved in siderophore biosynthesis in Pseudomonas putida WCS358. J Bacteriol 170:1812–1819

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mylona P, Pawlowski K, Bisseling T (1995) Symbiotic nitrogen fixation. Plant Cell 7:869–885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nap J-P, Bisseling T (1990) Developmental biology of a plant-prokaryote symbiosis: the legume root nodule. Science 250:948–954

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Marquez JC, Do Nasciment M, Zehr JP, Curatti L (2013) Genetic engineering of multispecies microbial cell factories as an alternative for bioenergy production. Trends Biotechnol 31:521–529

    Google Scholar 

  • Peralta H, Mora Y, Salazar E, Encarnación S, Palacios R, Mora J (2004) Engineering the nifH promoter region and abolishing poly-β-hydroxybutyrate accumulation in Rhizobium etli enhance nitrogen fixation in symbiosis with Phaseolus vulgaris. Appl Environ Microbiol 70:3272–3281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peters JW, Fisher K, Dean DR (1995) Nitrogenase structure and function: a biochemical-genetic perspective. Annu Rev Microbiol 49:335–366

    Article  CAS  PubMed  Google Scholar 

  • Ramírez M, Valderrama B, Arrendondo-Peter R, Soberón M, Mora J, Hernández G (1999) Rhizobium etli genetically engineered for the heterologous expression of Vitreoscilla sp. hemoglobin: effects on free-living and symbiosis. Mol Plant-Microbe Interact 12:1008–1015

    Article  Google Scholar 

  • Scavino AF, Pedraza RO (2013) The role of siderophores in plant growth-promoting bacteria. In: Maheshwari DK, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer-Verlag, Berlin, pp 265–285

    Chapter  Google Scholar 

  • Seefeldt FC, Hoffman BM, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem 78:701–722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spaink HP, Wijffelman CA, Pees E, Okker RJH, Lugtenberg BJJ (1987) Rhizobium nodulation gene nodD as a determinant of host specificity. Nature 328:337–340

    Article  CAS  Google Scholar 

  • Sprent JI (1986) Benefits of Rhizobium to agriculture. Trends Biotechnol 4:124–129

    Article  Google Scholar 

  • Stacey G (1995) Bradyrhizobium japonicum nodulation genetics. FEMS Microbiol Lett 127:1–9

    Article  CAS  PubMed  Google Scholar 

  • van Rhijn P, Vanderleyden J (1995) The Rhizobium-plant symbiosis. Microbiol Rev 59:124–142

    PubMed Central  PubMed  Google Scholar 

  • Wang D, Yang S, Tang F, Zhu H (2012) Symbiosis specificity in the legume-rhizobial mutualism. Cell Microbiol 14:334–342

    Article  PubMed  Google Scholar 

  • Webb BA, Hildreth S, Helm RF, Scharf BE (2014) Sinorhizobium meliloti chemoreceptor McpU mediates chemotaxis toward plant exudates through direct proline sensing. Appl Environ Micorbiol 80:3404–3415

    Article  CAS  Google Scholar 

  • Yang Z-Y, Moure VR, Dean DR, Seefeldt LC (2012) Carbon dioxide to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase. Proc Natl Acad Sci USA 109:19644–19648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zafar-ul-Hye M, Ahmad M, Shahzad SM (2013) Synergistic effect of rhizobia and plant growth promoting rhizobacteria on the growth and nodulation of lentil seedlings under axenic conditions. Soil Environ 32:79–86

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard R. Glick .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glick, B.R. (2015). Resource Acquisition. In: Beneficial Plant-Bacterial Interactions. Springer, Cham. https://doi.org/10.1007/978-3-319-13921-0_2

Download citation

Publish with us

Policies and ethics