Skip to main content

Introduction to Plant Growth-promoting Bacteria

  • Chapter
  • First Online:
Beneficial Plant-Bacterial Interactions

Abstract

The Reverend Thomas Robert Malthus (1766–1834) was a British cleric and scholar who became widely known for his theories about changes in the world’s population. He promulgated the idea that “The power of population is indefinitely greater than the power in the earth to produce subsistence for man.” That is, Malthus understood that sooner or later, the earth, which is finite, would be unable to produce enough food to feed all of the people who live here. Malthus’ thinking was in direct opposition to the view that was popular in eighteenth-century Europe that society would continue to improve and was in principle “perfectible.” Of course, neither Malthus nor any of his critics could have possibly predicted the enormous technological changes, including changes to agricultural and food storage technologies, that have taken place over the past 150–200 years. These changes have enabled the world’s population to expand dramatically in a relatively short period of time. However, these technological changes may have lulled us into a sense of false security whereby many people in society, especially in more developed countries, believe that we have never had it so good, and as long as our policies continue to support innovation and business expansion, the good life will continue on well into the future. Unfortunately, at this juncture, the threat of insufficient food to feed all of the world’s people is once again in the headlines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Albareda M, Rodriguez-Navaroo DN, Camacho M, Temprano FJ (2008) Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol Biochem 4:2771–2779

    Article  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    Article  CAS  Google Scholar 

  • Bashan Y, Hernandez JP, Leyva LA, Bacillio M (2002) Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol Fertil Soils 35:359–368

    Article  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez J-P (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33

    Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauff P, Huttel B, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, van Themaat EVL, Spaepen S, Schulze-Lefert P (2013) Structure and function of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41. doi:10.1007/s11104-014-2131-8

    Article  CAS  Google Scholar 

  • Charles M (1985) Fermentation scale-up: problems and possibilities. Trends Biotechnol 3:134–139

    Article  CAS  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology—a review. Soil Biol Biochem 36:1275–1288

    Article  CAS  Google Scholar 

  • Denton MD, Pearce DJ, Ballard RA, Hannah MC, Mutch LA, Norng S, Slattery JF (2009) A multi-site field evaluation of granular inoculants for legume nodulation. Soil Biol Biochem 41:2508–2516

    Article  CAS  Google Scholar 

  • Dixon ROD, Wheeler CT (1986) Nitrogen fixation in plants. Blackie and Son, Glasgow

    Google Scholar 

  • do Vale Barreto Figueiredo M, Seldin L, de Araujo FF, de Lima Ramos Mariano R (2010) Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin

    Google Scholar 

  • Dudeja SS, Giri R, Saini R, Suneja-Madan P, Kothe E (2012) Interaction of endophytic microbes with legumes. J Basic Microbiol 52:248–260

    Article  CAS  PubMed  Google Scholar 

  • Dykhuizen D (2005) Species numbers in bacteria. Proc Calif Acad Sci 56:62–71

    PubMed Central  PubMed  Google Scholar 

  • Flores-Félix JD, Menéndez E, Rivera LP, Marcos-Garcia M, Martinez-Hidalgo P, Mateos PF, Martinez-Molina E, Velazques ME, Garcia-Fraile P, Rivas P (2013) Use of Rhizobium leguminosarum as a potential fertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sci 176:876–882

    Article  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of fungal phytopathogens. Biotechnol Adv 15:353–378

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2004) Bacterial ACC deaminase and the alleviation of plant stress. Adv Appl Microbiol 56:291–312

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007a) Promotion of plant growth by ACC deaminase-containing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007b) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Harodim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97:8859–8873

    Article  CAS  PubMed  Google Scholar 

  • Jaleel MA, Sankar P, Kishorekumar B, Gopi A, Somasundaram R, Panneerselvam R (2007) Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Coll Surf. B Biointer 60:7–11

    Article  CAS  Google Scholar 

  • Kim S, Lowman S, Hou G, Nowak J, Flinn B, Mei C (2012) Growth promotion and colonization of switchgrass (Panicum virgatum) cv. Alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN. Biotechnol Biofuels 5:37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lacava PT, Azevedo JL (2013) Endophytic bacteria: a biotechnological potential in agrobiology system. In: Maheshwari DK, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, pp 1–44

    Chapter  Google Scholar 

  • Lunberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Glavina del Rio T, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Google Scholar 

  • Lynch JM (ed) (1990) The rhizosphere. Wiley-Interscience, Chichester

    Google Scholar 

  • McClung CR (2014) Making hunger yield. Science 344:699–700

    Article  CAS  PubMed  Google Scholar 

  • Mitter B, Petric A, Shin MW, Chain PS, Hauberg-Lotte L, Reinhold-Hurek B, Nowak J, Sessitsch A (2013) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci 4:120. doi:10.3389/fpls.2013.00120

    Article  PubMed Central  PubMed  Google Scholar 

  • Montero-Calasanz MC, Santamaria C, Albareda M, Daza A, Duan J, Glick BR, Camacho M (2013) Alternative rooting induction of semi-hardwood olive cuttings by several auxin-producing bacteria for organic agriculture systems. Span J Agric Res 11:146–154

    Article  Google Scholar 

  • Patten C, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002) The role of bacterial indoleacetic acid in the development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  • Reed MLE, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Anton Van Leeuwen 86:1–25

    Article  Google Scholar 

  • Reed MLE, Glick BR (2013) Applications of plant growth-promoting bacteria for plant and soil systems. In: Gupta VK, Schmoll M, Maki M, Tuohy M, Mazutti MA (eds) Applications of microbial engineering. Taylor and Francis, Enfield, pp 181–229

    Chapter  Google Scholar 

  • Riesenberg D, Guthke R (1999) High-cell-density cultivation of microorganisms. Appl Microbiol Biotechnol 51:422–430

    Article  CAS  PubMed  Google Scholar 

  • Schoebitz M, Lopez MD, Roldan A (2013) Bioencapsulation of microbial inoculants for better soil-plant fertilization. A review. Agron Sustain Dev 33:751–765

    Article  CAS  Google Scholar 

  • Strandberg L, Andersson L, Enfors S-O (1994) The use of fed batch cultivation for achieving high cell densities in the production of a recombinant protein in Escherichia coli. FEMS Microbiol Rev 14:53–56

    Article  CAS  PubMed  Google Scholar 

  • Van Brunt J (1985) Scale-up: the next hurdle. Biotechnology 3:419–424

    Article  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • West PC, Gerber JS, Engstrom PM, Mueller ND, Brauman KA, Carlson KM, Cassidy ES, Johnston M, MacDonald GK, Ray DK, Siebert S (2014) Leverage points for improving global food security and the environment. Science 345:325–328

    Article  CAS  PubMed  Google Scholar 

  • White MD, Glick BR, Robinson CW (1995) Bacterial, yeast and fungal cultures: the effect of microorganism type and culture characteristics on bioreactor design and operation. In: Asenjo JA, Merchuk J (eds) Bioreactor system design. Marcel Dekker, New York, pp 47–87

    Google Scholar 

  • Wu CH, Bernard SM, Andersen GL, Chen W (2009) Developing microbe–plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microb Biotechnol 2:428–440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard R. Glick .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glick, B.R. (2015). Introduction to Plant Growth-promoting Bacteria. In: Beneficial Plant-Bacterial Interactions. Springer, Cham. https://doi.org/10.1007/978-3-319-13921-0_1

Download citation

Publish with us

Policies and ethics