Skip to main content

Flavivirus

  • Chapter
  • First Online:
Arthropod Borne Diseases

Abstract

The Flavivirus genus currently includes 53 viral species, most of them transmitted by mosquitoes and tick bites and others with not known vector and specific insect flavivirus. Flaviviruses comprise important arthropod-transmitted human pathogens, including yellow fever virus (YFV), Dengue virus (DENV), Japanese encephalitis virus (JEV), West Nile virus (WNV), and tick-borne encephalitis virus (TBEV). DEN viruses are globally expanded and are the most important mosquito-borne disease after malaria. Also with a worldwide distribution, YFV still cause mortality events around the world. Besides human vaccination campaign, enzootic foci remain active triggering emerging events for this pathology. West Nile virus, endemic in Old World countries, was introduced to American continent by 1999. It became an important human and veterinary pathogen due to its virulence in human beings, horses, and wild birds (especially in corvids). Antigenically closely related, St. Louis encephalitis virus co-circulates with WNV in American continent. Since 2002, it reemerged in the south cone of South America as a human encephalitis etiological agent. Tick-borne encephalitis virus still causes human encephalitis outbreaks in Eastern Europe and Russia. Zika virus with endemic activity in Africa and Polynesia became an emerging flavivirus with outbreaks reported in South America (Brazil, Colombia, Easter Island, and several other areas). In this chapter, authors will focus in general aspects of flaviviruses and their diseases, their spatial and temporal distributions patterns, ecology, epidemiology, pathogeny, and phylodynamics. Moreover, factors affecting their epidemiology and emergence are emphasized. Due to the great importance and amount of knowledge on dengue and yellow fever, these diseases deserved separated chapters (Chaps. 7 and 8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although several taxonomic modifications have been proposed on Culicidae genera, mostly splitting Aedes by Reinert (2009) (and accepted by CBM), this taxonomy has been used in the chapters according to authors’ preference. To facilitate utilization by health personnel, all new aedine genera can be considered Aedes (CBM).

  2. 2.

    Special abbreviations for mosquito genera proposed by Reinert (2009) were utilized.

  3. 3.

    Dozens of cases of Guillain-Barré syndrome have been reported from the Brazilian state of Bahia, probably associated to Zika virus (http://www.saude.ba.gov.br/novoportal/index.php?option=com_content&view=article&id=9453:sindrome-de-guillain-barre-perguntas-e-respostas&catid=13:noticias&Itemid=25, accessed in Sept 14, 2015) (CBM).

  4. 4.

    Special abbreviations for tick genera proposed by Dantas-Torres (2008) were utilized.

References

  • Anderson JF, Main AJ, Andreadis TG et al (2003) Transstadial transfer of West Nile virus by three species of ixodid ticks (Acari: Ixodidae). J Med Entomol 40:528–533

    Article  PubMed  Google Scholar 

  • Anderson JF, Main AJ (2006) Importance of vertical and horizontal transmission of West Nile virus by Culex pipiens in the Northeastern United States. J Infect Dis 194:1577–1579

    Article  PubMed  Google Scholar 

  • Ashraf U, Ye J, Ruan X et al (2015) Usutu virus: an emerging flavivirus in Europe. Viruses 7:219–238

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellini R, Zeller H, Van Bortel W (2014) A review of the vector management method o prevent and control outbreaks of West Nile virus infection and the challenge for Europe. Parasit Vectors 7:323

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogovic P, Strle F (2015) Tick-borne encephalitis: a review of epidemiology, clinical characteristics, and management. World J Clin Cases 3:430–441

    Article  PubMed  PubMed Central  Google Scholar 

  • Calvet G, Aguiar RS, Melo AS et al (2016) Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: A case study. Lancet Infect Dis 16:653–660

    Google Scholar 

  • Cao-Lormeau VM, Roche C, Teissier A et al (2014) Zika virus, French Polynesia, South Pacific, 2013. Emerg Infect Dis 20:1085–1086Center for Diseases Control and Prevention (2015). Saint Louis Encephalitis. Epidemiology and Geographic distribution. http://www.cdc.gov/sle/technical/epi.html

  • Chancey C, Grinev A, Volkova E et al (2015) The global ecology and epidemiology of West Nile Virus. Biomed Res Int 2015:376230

    Article  PubMed  PubMed Central  Google Scholar 

  • Dantas-Torres F (2008) Towards the standardization of the abbreviations of genus names of ticks (Acari: Parasitiformes: Ixodida). Vet Parasitol 154:94–97

    Article  PubMed  Google Scholar 

  • Darwish MA, Hoogstraal H, Roberts TJ et al (1983) A sero-epidemiological survey for certain arboviruses (Togaviridae) in Pakistan. Trans R Soc Trop Med Hyg 77:442–445

    Article  CAS  PubMed  Google Scholar 

  • Diaz LA, Quaglia A, Flores FS et al (2011) Virus West Nile en Argentina: un agente infeccioso emergente que plantea nuevos desafíos. Hornero [online] 26:5–28, http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0073-34072011000100002&lng=es&nrm=iso

  • Diaz LA, Spinsanti L, Contigiani M (2013) St. Louis encephalitis. In: Singh S, Růžek D (eds) Neuroviral infections. Taylor and Francis Group, LLC, CRC Press, Boca Raton, London, New York, pp 239–260

    Chapter  Google Scholar 

  • Duffy MR, Chen TH, Hancock WT et al (2009) Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360:2536–2543

    Article  CAS  PubMed  Google Scholar 

  • Dutta K, Nazmi A, Basu A (2013) Japanese encephalitis virus and human CNS infection. In: Singh S, Růžek D (eds) Neuroviral infections. Taylor and Francis Group, LLC, CRC Press, Boca Raton, London, New York, pp 193–210

    Chapter  Google Scholar 

  • Gomes G, Causey OR (1959) Bussuquara, a new arthropod-borne virus. Proc Soc Exp Biol Med 101:275–279

    Article  CAS  PubMed  Google Scholar 

  • Gould EA, Solomon T (2008) Pathogenic flaviviruses. Lancet 371:500–509

    Article  CAS  PubMed  Google Scholar 

  • Gray TJ, Webb CE (2014) A review of the epidemiological and clinical aspects of West Nile virus. Int J Gen Med 7:193–203

    Article  PubMed  PubMed Central  Google Scholar 

  • Gubler DJ, Kuno G, Markoff L (2007) Flaviviruses. In: Knipe DM, Howley PM, Griffin DE et al (eds) Fields virology, 5th edn. Lippincott Williams & Wilkins Publishers, Philadelphia, PA, pp 1153–1252

    Google Scholar 

  • Hayes EB (2009) Zika virus outside Africa. Emerg Infect Dis 15:1347–1350

    Article  PubMed  PubMed Central  Google Scholar 

  • ICTV (2014) Virus Taxonomy: 2014 Release. http://www.ictvonline.org/virusTaxonomy.aspJones CT, Ma L, Burgner JW et al (2003) Flavivirus capsid is a dimeric alpha-helical protein. J Virol 77: 7143–7149

  • Ioos S, Mallet HP, Leparc Goffart I et al (2014) Current Zika virus epidemiology and recent epidemics. Med Mal Infect 44:302–307

    Article  CAS  PubMed  Google Scholar 

  • Kilpatrick AM, Ladeau SL, Marra PP (2007) The ecology and impact of West Nile virus in the Western Hemisphere. Auk 124:1121–1136

    Article  Google Scholar 

  • Komar N, Langevin S, Hinten S et al (2003) Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9:311–322

    Article  PubMed  PubMed Central  Google Scholar 

  • Laemmert HW, Hughes TP (1947) The virus of Ilheus encephalitis; isolation, serological specificity, and transmission. J Immunol 55:61–67

    PubMed  Google Scholar 

  • Lopes OS, Sacchetta LA, Coimbra TLM et al (1978) Emergence of a new arbovirus disease in Brazil. II. Epidemiological studies on 1975 epidemic. Am J Epidemiol 108:394–401

    Google Scholar 

  • Mackenzie JS (2005) Emerging zoonotic encephalitis viruses: lessons from Southeast Asia and Oceania. J Neurovirol 11:434–440

    Article  PubMed  Google Scholar 

  • Mishra MK, Ghosh D, Duseja R et al (2009) Antioxidant potential of Minocycline in Japanese Encephalitis Virus infection in murine neuroblastoma cells: correlation with membrane fluidity and cell death. Neurochem Int 54:464–470

    Article  CAS  PubMed  Google Scholar 

  • Mondini A, Cardeal IL, Lázaro E et al (2007) Saint Louis encephalitis virus, Brazil. Emerg Infect Dis 13:176–178

    Article  PubMed  PubMed Central  Google Scholar 

  • Oehler E, Watrin L, Larre P et al (2014) Zika virus infection complicated by Guillain-Barré syndrome—case report, French Polynesia, December 2013. Eurosurveillance 19:20720

    Google Scholar 

  • Ong RY, Lum FK, Ng LFP (2014) The fine line between protection and pathology in neurotropic flavivirus and alphavirus infections. Future Virol 9(3): 313–330

    Google Scholar 

  • Pauvolid-Corrêa A, Kenney JL, Couto-Lima D et al (2013) Ilheus virus isolation in the Pantanal, west-central Brazil. PLoS Negl Trop Dis 7, e2318. doi:10.1371/journal.pntd.0002318

    Article  PubMed  PubMed Central  Google Scholar 

  • ProMED mail (2015) ZIKA VIRUS - BRAZIL (02): (São Paulo). International Society of Infectious Diseases. Archive Number: 20150524.3382529. http://www.promedmail.org/

  • Reinert JF (2009) List of abbreviations for currently valid generic-level taxa in family Culicidae (Diptera). Eur Mosq Bull 27:68–76

    Google Scholar 

  • Roehrig JT (2013) West Nile virus in the United States—a historical perspective. Viruses 5:3088–3108

    Article  PubMed  PubMed Central  Google Scholar 

  • Root JJ, Oesterle PT, Nemeth NM et al (2006) Experimental infection of fox squirrels (Sciurus niger) with West Nile virus. Am J Trop Med Hyg 75:697–701

    PubMed  Google Scholar 

  • Růžek D, Yakimenko VV, Karan LS et al (2010) Omsk haemorrhagic fever. Lancet 376:2104–2113

    Article  PubMed  Google Scholar 

  • Růžek D, Bartosz B, Günther G (2013) Tick-borne encephalitis. In: Singh S, Růžek D (eds) Neuroviral infections. Taylor and Francis Group, LLC, CRC Press, Boca Raton, London, New York, pp 211–238

    Google Scholar 

  • Sabattini MS, Avilés G, Monath TP (1998) Historical, epidemiological and ecological aspects of arbovirus in Argentina: Flaviviridae, Bunyaviridae and Rhabdoviridae. In: Travassos da Rosa APA, Vasconcelos PFC, Travassos da Rosa JFS (eds) An overview of arbovirology in Brazil and neighboring countries. Instituto Evandro Chagas, Belém, pp 113–134

    Google Scholar 

  • Selvey LA, Dailey L, Lindsay M et al (2014) The changing epidemiology of Murray Valley encephalitis in Australia: the 2011 outbreak and a review of the literature. PLoS Negl Trop Dis 8, e2656

    Article  PubMed  PubMed Central  Google Scholar 

  • Shlim DR and Solomon T (2002) Japanese encephalitis vaccine for travelers: exploring the limits of risk. Clin Infect Dis 35:183–188

    Google Scholar 

  • Solomon T, Ni H, Beasley DW et al (2003) Origin and evolution of Japanese encephalitis virus in southeast Asia. J Virol 77:3091–3098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spinsanti LI, Díaz LA, Glatstein N et al (2008) Human outbreak of St. Louis encephalitis detected in Argentina, 2005. J ClinVirol 42:27–33

    Google Scholar 

  • Tauber E, Kollaritsch H, Korinek M et al (2007) Safety and immunogenicity of a Vero-cell-derived, inactivated Japanese encephalitis vaccine: a non-inferiority, phase III, randomised controlled trial. Lancet 370:1847–1853

    Article  CAS  PubMed  Google Scholar 

  • Turell MJ, Dohm DJ, Sardelis MR et al (2005) An update on the potential of North American mosquitoes (Diptera: Culicidae) to transmit West Nile Virus. J Med Entomol 42:57–62

    Article  PubMed  Google Scholar 

  • Turtle L, Griffiths MJ, Solomon T (2012) Encephalitis caused by flaviviruses. Q J Med 105:219–223

    Article  CAS  Google Scholar 

  • Unlu I, Mackay AJ, Roy A et al (2010) Evidence of vertical transmission of West Nile virus in field-collected mosquitoes. J Vector Ecol 35:95–99

    Article  PubMed  Google Scholar 

  • Victora CG, Schuler-Faccini L, Matijasevich A et al (2016) Microcephaly in Brazil: How to interpret reported numbers? Lancet 387:621–624

    Google Scholar 

  • Willison HJ, Jacobs BC, van Doorn PA (2016) Guillain–Barre syndrome. Lancet 388(10045):717–727

    Google Scholar 

  • Yadav PD, Shete AM, Patil DY et al (2014) Outbreak of Kyasanur Forest disease in Thirthahalli, Karnataka, India, 2014. Int J Infect Dis 26:132–134

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta S Contigiani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Contigiani, M.S., Diaz, L.A., Spinsanti, L. (2017). Flavivirus . In: Marcondes, C. (eds) Arthropod Borne Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-13884-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13884-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13883-1

  • Online ISBN: 978-3-319-13884-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics