Skip to main content

General Aspects on Arboviruses

  • Chapter
  • First Online:
Arthropod Borne Diseases

Abstract

Arboviruses do not represent a based-related phylogenetic group, but they are all transmitted by arthropods. Fifty arboviruses pathogenic for animals (including humans) have been reported, belonging to the families Asfarviridae, Bunyaviridae, Flaviviridae, Orthomyxoviridae, Rhabdoviridae, Reoviridae, and Togaviridae. A wide variety of hematophagous arthropods transmits the arboviruses: biting midges, cimicid bugs, mosquitoes, sand flies, and ticks. The vector acquires the infection by blood feeding from a viremic host and transmits the virus to a new host by the oral route (inoculating infected saliva). However, vertical transmission routes already exist (transovarial, venereal). Arbovirus can be amplified by a diverse range of vertebrate hosts including birds, rodents, equines, humans, and monkeys. Through biological evolution and cultural development, human beings were able to modify the environments according to their needs. Thus, deforestation has produced new areas for agriculture, livestock, farming activities, and urbanization. These anthropogenic activities have produced great changes to host and vector communities and population abundance, sometimes driving emergence and reemergence of arboviruses. In this chapter, we give a general view for most important aspects of arboviruses, their classification, transmission and maintenance mechanisms, ecology, and emergence process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The word “arbovirus” (originally “arborvirus”) was created by illustrious pioneer William C. Reeves, as described in his nice review (Reeves 2001) (CBM).

  2. 2.

    These concepts are more thoroughly analyzed in Chap. 2.

  3. 3.

    Special abbreviations for mosquito genera proposed by Reinert (2009) were utilized.

References

  • Allan B, Langerhans R, Ryberg W et al (2009) Ecological correlates of risk and incidence of West Nile virus in the United States. Oecologia 158:699–708

    Article  PubMed  Google Scholar 

  • Antonis AF, Kortekaas J, Kant J et al (2013) Vertical transmission of Rift Valley fever virus without detectable maternal viremia. Vector Borne Zoonotic Dis 13:601–606

    Article  CAS  PubMed  Google Scholar 

  • Barrett AD, Monath TP (2003) Epidemiology and ecology of yellow fever virus. Adv Virus Res 61:291–315

    Article  PubMed  Google Scholar 

  • Brown CR, Strickler SA, Moore AT et al (2010) Winter ecology of Buggy Creek virus (Togaviridae, Alphavirus) in the Central Great Plains. Vector Borne Zoonotic Dis 10:355–363

    Article  PubMed  PubMed Central  Google Scholar 

  • Chancey C, Grinev A, Volkova E et al (2015) The global ecology and epidemiology of West Nile virus. Biomed Res Int 2015:376230

    Article  PubMed  PubMed Central  Google Scholar 

  • Coffey LL, Forrester N, Tsetsarkin K et al (2013) Factors shaping the adaptive landscape for arboviruses: implications for the emergence of disease. Future Microbiol 8:155–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daubney R, Hudson J, Garnham P (1931) Enzootic hepatitis or Rift Valley fever: an undescribed virus disease of sheep, cattle and man from East Africa. J Pathol Bacteriol 34:545–579

    Article  Google Scholar 

  • Díaz LA, Albrieu Llinás G, Vázquez A et al (2012) Silent circulation of St. Louis encephalitis virus prior to an encephalitis outbreak in Cordoba, Argentina (2005). PLoS Negl Trop Dis 6, e1489

    Article  PubMed  PubMed Central  Google Scholar 

  • Diaz LA, Flores FS, Quaglia A et al (2013) Intertwined arbovirus transmission activity: reassessing the transmission cycle paradigm. Front Physiol 3:493

    Article  PubMed  PubMed Central  Google Scholar 

  • Diaz LA, Nemeth NM, Bowen RA et al (2011) Comparison of Argentinean Saint Louis encephalitis virus non-epidemic and epidemic strain infections in an avian model. PLoS Negl Trop Dis 5, e1177

    Article  PubMed  PubMed Central  Google Scholar 

  • EFSA (2011) Panel on Animal Health and Welfare (AHAW); Scientific Opinion on bluetongue serotype 8. EFSA J 9(5):2189 [51 pp]. doi:10.2903/j.efsa.2011.2189, Available online: www.efsa.europa.eu/efsajournal.htm

    Google Scholar 

  • Ezenwa V, Godsey M, King R et al (2006) Avian diversity and West Nile virus: testing associations between biodiversity and infectious disease risk. Proc Biol Sci 273:109–117

    Article  PubMed  Google Scholar 

  • Ezenwa V, Milheim L, Coffey M et al (2007) Land cover variation and West Nile virus prevalence: patterns, processes, and implications for disease control. Vector Borne Zoonotic Dis 7:173–180

    Article  PubMed  Google Scholar 

  • Hassan HK, Cupp EW, Hill GE et al (2003) Avian host preference by vectors of eastern equine encephalomyelitis virus. Am J Trop Med Hyg 69:641–647Higgs S and Beaty BJ (2005) Natural cycles of Vector-borne pathogens. In “Biology of Diseases Vectors”. Marquardt WC (ed). Elsevier, San Diego, CA, p. 167-185

    Google Scholar 

  • Hubálek Z, Rudolf I, Nowotny N (2014) Arboviruses pathogenic for domestic and wild animals. Adv Virus Res 89:201–275

    Article  PubMed  Google Scholar 

  • Hughes MT, Gonzalez JA, Reagan KL et al (2006) Comparative potential of Aedes triseriatus, Aedes albopictus, and Aedes aegypti (Diptera: Culicidae) to transovarially transmit La Crosse virus. J Med Entomol 43:757–761

    Article  PubMed  Google Scholar 

  • Iranaia AM, Cruz-Oliveira C, DaPoian AT (2013) Molecular mechanisms involved in the pathogenesis of alphavirus-induced arthritis. Biomed Res Int 2013:973516

    Google Scholar 

  • Karabatsos N (1985) International catalogue of arboviruses including certain other viruses of vertebrates. American Society Tropical Medicine and Hygiene, San Antonio, TX

    Google Scholar 

  • Kenney JL, Brault AC (2014) The role of environmental, virological and vector interactions in dictating biological transmission of arthropod-borne viruses by mosquitoes. Adv Virus 89:39–83

    Article  CAS  Google Scholar 

  • Kilpatrick A (2011) Globalization, land use and invasion of West Nile virus. Science 334:323–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komar N, Dohm DJ, Turell MJ et al (1999) Eastern equine encephalitis virus in birds: relative competence of European starlings (Sturnus vulgaris). Am J Trop Med Hyg 60:387–391

    CAS  PubMed  Google Scholar 

  • Komar N, Langevin S, Hinten S et al (2003) Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9:311–322

    Google Scholar 

  • Kramer LD, Ebel GD (2003) Dynamics of flavivirus infection in mosquitoes. Adv Virus Res 60:187–232

    Google Scholar 

  • Kuno G (1995) Review of the factors modulating dengue transmission. Epidemiol Rev 17:321–335

    CAS  PubMed  Google Scholar 

  • Kuno G, Chang G (2005) Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin Microbiol Rev 18:608–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labuda M, Nuttall PA (2004) Tick-borne viruses. Parasitology 129(Suppl):S221–S245

    Article  CAS  PubMed  Google Scholar 

  • Lazear HM, Diamond MS (2014) New insights into innate immune restriction of West Nile virus infection. Curr Opin Virol 11:1–6

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Flohic G, Porphyre V, Barbazan P et al (2013) Review of climate, landscape, and viral genetics as drivers of the Japanese encephalitis virus ecology. PLoS Negl Trop Dis 7, e2208

    Article  PubMed  PubMed Central  Google Scholar 

  • Lequime S, Lambrechts L (2014) Vertical transmission of arboviruses in mosquitoes: a historical perspective. Infect Genet Evol 28:681–690

    Article  PubMed  Google Scholar 

  • Loss S, Hamer G, Walker E et al (2009) Avian host community structure and prevalence of West Nile virus in Chicago, Illinois. Oecologia 159:415–424

    Article  PubMed  Google Scholar 

  • Maclachlan NJ (2011) Bluetongue: history, global epidemiology, and pathogenesis. Prev Vet Med 102:107–111

    Article  PubMed  Google Scholar 

  • McKenzie V, Goulet N (2010) Bird community composition linked to human West Nile virus cases along the Colorado front range. Ecohealth 7:439–447

    Article  PubMed  Google Scholar 

  • McLean RG, Bowen GS (1980) Vertebrate hosts. In: Monath TP (ed) St Louis encephalitis. American Publich Health Association, Washington, DC, pp 381–450

    Google Scholar 

  • McLean RG, Ubico SR, Docherty DE et al (2001) West Nile virus transmission and ecology in birds. Ann N Y Acad Sci 951:54–57

    Article  CAS  PubMed  Google Scholar 

  • Morris CD (1988) Eastern equine encephalomyelitis. In: Monath TP (ed) The arboviruses: epidemiology and ecology, vol 3. CRC Press, Boca Raton, FL, pp 1–20

    Google Scholar 

  • Muñoz M, Navarro JC (2012) Mayaro: a re-emerging Arbovirus in Venezuela and Latin America. Biomedica 32:286–302

    PubMed  Google Scholar 

  • Oncü S (2013) Crimean-Congo hemorrhagic fever: an overview. Virol Sin 28:193–201

    Article  PubMed  Google Scholar 

  • Reeves WC (2001) Partners: serendipity in arbovirus research. J Vector Ecol 26:1–6

    CAS  PubMed  Google Scholar 

  • Reinert JF (2009) List of abbreviations for currently valid generic-level taxa in family Culicidae (Diptera). Eur Mosq Bull 27:68–76

    Google Scholar 

  • Reisen WK, Barker CM, Carney R et al (2006) Role of corvids in epidemiology of west Nile virus in southern California. J Med Entomol 43:356–367

    Article  PubMed  Google Scholar 

  • Reisen WK, Chiles RE, Martinez VM et al (2003) Experimental infection of California birds with western equine encephalomyelitis and St. Louis encephalitis viruses. J Med Entomol 40:968–982

    Article  CAS  PubMed  Google Scholar 

  • Reisen WK, Monath TP (1989) Western equine encephalomyelitis. In: Monath TP (ed) The arboviruses: epidemiology and ecology, vol 3. CRC Press, Boca Raton, FL, pp 89–137

    Google Scholar 

  • Schmid MA, Diamond MS, Harris E (2014) Dendritic cells in dengue virus infection: targets of virus replication and mediators of immunity. Front Immunol 5:647

    Article  PubMed  PubMed Central  Google Scholar 

  • Scott TW (1988) Vertebrate host ecology. In: Monath TP (ed) The arboviruses: epidemiology and ecology, vol 3. CRC Press, Boca Raton FL, pp 257–280

    Google Scholar 

  • Solomon T, Mallewa M (2001) Dengue and other emerging flaviviruses. J Infect 42:104–115

    Article  CAS  PubMed  Google Scholar 

  • Suen WW, Prow NA, Hall RA et al (2014) Mechanism of West Nile virus neuroinvasion: a critical appraisal. Viruses 6:2796–2825

    Article  PubMed  PubMed Central  Google Scholar 

  • Swaddle JP, Calos SE (2008) Increased avian diversity is associated with lower incidence of human West Nile infection: observation of the dilution effect. PLoS One 3, e2488. doi:10.1371/journal.pone.0002488

    Article  PubMed  PubMed Central  Google Scholar 

  • Tatem AJ, Hay SI, Rogers DJ (2006) Global traffic and disease vector dispersal. Proc Natl Acad Sci U S A 103:6242–6247

    Google Scholar 

  • Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S (2007) A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3(12), e201

    Google Scholar 

  • Turtle L, Griffiths MJ, Solomon T (2012) Encephalitis caused by flaviviruses. QJM 105:219–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasconcelos P, Travassos da Rosa A, Rodrigues S et al (2001) Inadequate management of natural ecosystem in the Brazilian Amazon region results in the emergence and reemergence of arboviruses. Cad Saude Publica 17:155–164

    Article  PubMed  Google Scholar 

  • Weaver SC, Anishchenko M, Bowen R et al (2004a) Genetic determinants of Venezuelan equine encephalitis emergence. Arch Virol Suppl 18:43–64

    Google Scholar 

  • Weaver SC, Barrett AD (2004) Transmission cycles, host range, evolution and emergence of arboviral disease. Nat Rev Microbiol 2:789–801

    Article  CAS  PubMed  Google Scholar 

  • Weaver SC, Ferro C, Barrera R et al (2004b) Venezuelan equine encephalitis. Ann Rev Entomol 49:141–174

    Article  CAS  Google Scholar 

  • Weaver SC, Forrester NL (2015) Chikungunya: evolutionary history and recent epidemic spread. Antiviral Res 120:32–39

    Article  CAS  PubMed  Google Scholar 

  • Weaver SC, Reisen WK (2010) Present and future arboviral threats. Antiviral Res 85:328–345

    Article  CAS  PubMed  Google Scholar 

  • Wernike K, Conraths F, Zanella G et al (2014) Schmallenberg virus-two years of experiences. Prev Vet Med 116:423–434

    Article  PubMed  Google Scholar 

  • White DM, Wilson WC, Blair CD et al (2005) Studies on overwintering of bluetongue viruses in insects. J Gen Virol 86(Pt 2):453–462

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta S. Contigiani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Contigiani, M.S., Diaz, L.A., Spinsanti, L.I. (2017). General Aspects on Arboviruses. In: Marcondes, C. (eds) Arthropod Borne Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-13884-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13884-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13883-1

  • Online ISBN: 978-3-319-13884-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics