Skip to main content

Geoprocessing and Expected Distribution of Diseases (Including Deforestation, Global Warming, and Other Changes)

  • Chapter
  • First Online:
Arthropod Borne Diseases
  • 2175 Accesses

Abstract

In epidemiology, in order to estimate risks and plan control measures, it is very important to predict when and where a disease may occur, even in areas not previously studied. It is also relevant for decision making to estimate or predict a priori the impacts resulting from changes in land use, land cover, and climate, among others, on the potential occurrence, distribution, or incidence of a disease. The meteorological and environmental products derived from satellite imagery can be used to monitor some conditions that favor or alternatively preclude the proliferation of vectors or affect the transmission of pathogens. In this chapter, we intend to make an introduction of the use of remote sensing and GIS technology for the study and surveillance of vector populations and for risk assessment of vector-borne diseases. In addition, some of the relations between anthropic and environmental changes and selected vector-borne diseases are revised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Degree-days are temperature units above a threshold, accumulated over 24-h periods, that are used to measure or represent the physiological time (or age) of a poikilotherm organism, i.e., the amount of heat the organism requires to develop from one stage to the next.

  2. 2.

    More information on the influence of climate on diseases, on R0 and on vector capacity may be found in Chap. 2 (Epidemiology) (CBM).

References

  • Achee NL, Grieco JP, Masuoka P, Andre RG, Roberts DR, Thomas J, Briceno I, King R, Rejmankova E (2006) Use of remote sensing and geographic information systems to predict locations of Anopheles darlingi-positive breeding sites within the Sibun River in Belize, Central America. J Med Entomol 43:382–392

    Google Scholar 

  • Baylis M, Bouayoune H, Touti J et al (1998) Use of climatic data and satellite imagery to model the abundance of Culicoides imicola, the vector of African horse sickness virus, in Morocco. Med Vet Entomol 12:255–266

    Article  CAS  PubMed  Google Scholar 

  • Bunnell JE, Price SD, Das A et al (2003) Geographic information systems and spatial analysis of adult Ixodes scapularis (Acari: Ixodidae) in the Middle Atlantic region of the U.S.A. J Med Entomol 40:570–576

    Article  PubMed  Google Scholar 

  • Carbajo AE, Schweigmann N, Curto SI et al (2001) Dengue transmission risk maps of Argentina. Trop Med Int Health 6:170–183

    Article  CAS  PubMed  Google Scholar 

  • Ceccarelli S, Balsalobre A, Susevich ML et al (2015) Modelling the potential geographic distribution of triatomines infected by Triatoma virus in the southern cone of South America. Parasit Vectors 8:153. doi:10.1186/s13071-015-0761-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceccato P, Ghebremeskel T, Jaiteh M et al (2007) Malaria stratification, climate, and epidemic early warning in Eritrea. Am J Trop Med Hyg 77:61–68

    PubMed  Google Scholar 

  • Chase JM, Knight TM (2003) Drought-induced mosquito outbreaks in wetlands. Ecol Lett 6:1017–1024

    Article  Google Scholar 

  • Chaves LF, Pascual M (2006) Climate cycles and forecasts of cutaneous leishmaniasis, a nonstationary vector-borne disease. PLoS Med 3, e295

    Article  PubMed  PubMed Central  Google Scholar 

  • Conley AK, Watling JI, Orrock JL (2011) Invasive plant alters ability to predict disease vector distribution. Ecol Appl 21:329–334

    Article  PubMed  Google Scholar 

  • Curtis A, Blackburn JK, Widmer JM et al (2013) A ubiquitous method for street scale spatial data collection and analysis in challenging urban environments: mapping health risks using spatial video in Haiti. Int J Health Geogr 12:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Dister SW, Fish D, Bros SM et al (1997) Landscape characterization of peridomestic risk for Lyme disease using satellite imagery. Am J Trop Med Hyg 57:687–692

    CAS  PubMed  Google Scholar 

  • Diuk-Wasser MA, Brown HE, Andreadis TG et al (2006) Modeling the spatial distribution of mosquito vectors for West Nile virus in Connecticut, USA. Vector Borne Zoonotic Dis 6:283–295

    Article  PubMed  Google Scholar 

  • Elias SP, Lubelczyk CB, Rand PW et al (2006) Deer browse resistant exotic-invasive understory: an indicator of elevated human risk of exposure to Ixodes scapularis (Acari: Ixodidae) in Southern coastal Maine woodlands. J Med Entomol 43:1142–1152

    Article  PubMed  Google Scholar 

  • Estrada-Peña A (2001) Forecasting habitat suitability for ticks and prevention of tick-borne diseases. Vet Parasitol 98:111–132

    Article  PubMed  Google Scholar 

  • Estrada Peña A, Estrada Sanchez D (2014) Deconstructing Ixodes ricinus: a partial matrix model allowing mapping of tick development, mortality and activity rates. Med Vet Entomol 28:35–49

    Google Scholar 

  • Estrada-Peña A, Estrada-Sánchez A, Fuente J (2014) A global set of Fourier-transformed remotely sensed covariates for the description of abiotic niche in epidemiological studies of tick vector species. Parasit Vectors 7:302

    Article  PubMed  PubMed Central  Google Scholar 

  • Gebre-Michael T, Malone JB, Balkew M et al (2004) Mapping the potential distribution of Phlebotomus martini and P. orientalis (Diptera: Psychodidae), vectors of kala-azar in East Africa by use of geographic information systems. Acta Trop 90:73–86

    Article  CAS  PubMed  Google Scholar 

  • Githeko AK, Lindsay SW, Confalonieri WE, Patz JA (2000) Climate change and vector-borne diseases: a regional analysis. Bull World Health Org 78:1136–1147

    Google Scholar 

  • Gleiser RM, Zalazar LP (2009) Distribution of mosquitoes in relation to urban landscape characteristics. Bull Entomol Res 5:1–6

    Google Scholar 

  • Gleiser RM, Gorla DE, Ludueña Almeida FF (1997) Monitoring the abundance of Aedes (Ochlerotatus) albifasciatus (Macquart 1838) (Diptera: Culicidae) to the south of Mar Chiquita Lake, central Argentina, with the aid of remote sensing. Ann Trop Med Parasitol 91:917–926

    Article  CAS  PubMed  Google Scholar 

  • Gleiser RM, Gorla DE, Schelotto G (2000) Population dynamics of Aedes albifasciatus (Diptera: Culicidae) south of Mar Chiquita Lake, central Argentina. J Med Entomol 37:21–26

    Article  CAS  PubMed  Google Scholar 

  • Hendrickx G, Napala A, Rogers D et al (1999) Can remotely sensed meteorological data significantly contribute to reduce costs of tsetse surveys? Mem Inst Oswaldo Cruz 94:273–276

    Article  CAS  PubMed  Google Scholar 

  • Hunter PR (2003) Climate change and waterborne and vector-borne disease. J Appl Microbiol 94:S37–S46

    Article  Google Scholar 

  • Jacob BG, Shililu J, Muturi EJ et al (2006) Spatially targeting Culex quinquefasciatus aquatic habitats on modified land cover for implementing an Integrated Vector Management (IVM) program in three villages within the Mwea Rice Scheme, Kenya. Int J Health Geogr 5:18. doi:10.1186/1476-072X-5-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk. Ecol Lett 9:485–498

    Article  CAS  PubMed  Google Scholar 

  • Lee EC, Asher JM, Goldlust S, Kraemer JD, Lawson AB, Bansal S (2016) Mind the scales: Harnessing spatial big data for infectious disease surveillance and inference. arXiv:1605.08740v2 [q-bio.PE]

    Google Scholar 

  • Linthicum KJ, Bailey CL, Tucker CJ et al (1991) Towards real-time predictions of Rift Valley fever epidemics in Africa. Prev Vet Med 11:325–334

    Article  Google Scholar 

  • Malone JB, Nieto P, Tadesse A (2006) A biology-based mapping of vector-borne parasites by geographic information systems and remote sensing. Parassitologia 48:77–79

    CAS  PubMed  Google Scholar 

  • Mangudo C, Aparicio JP, Gleiser RM (2015) Tree holes as larval habitats for Aedes aegypti in urban, suburban and forest habitats in a dengue affected area. Bull Entomol Res. doi:10.1017/S0007485315000590

    PubMed  Google Scholar 

  • Martinson HM, Raupp MJ (2013) A meta-analysis of the effects of urbanization on ground beetle communities. Ecosphere 4:art60

    Google Scholar 

  • Matthews SD, Meehan LJ, Onyabe DY et al (2007) Evidence for late Pleistocene population expansion of the malarial mosquitoes, Anopheles arabiensis and Anopheles gambiae in Nigeria. Med Vet Entomol 21:358–369

    Article  CAS  PubMed  Google Scholar 

  • McCann RS, Messina JP, MacFarlane DW et al (2014) Modeling larval malaria vector habitat locations using landscape features and cumulative precipitation measures. Int J Health Geogr 13:17. doi:10.1186/1476-072X-13-17

    Article  PubMed  PubMed Central  Google Scholar 

  • McCarthy JJ, Canziani OF, Leary NA et al (2001) Climate change 2001: impacts, adaptation, and vulnerability. Cambridge University Press, Published for the Intergovernmental Panel on Climate Change, Cambridge

    Google Scholar 

  • Medone P, Ceccarelli S, Parham PE, Figuera A, Rabinovich JE (2015) The impact of climate change on the geographical distribution of two vectors of Chagas disease: implications for the force of infection. Phil Trans R Soc B 370:20130560

    Google Scholar 

  • Mutuku FM, Bayoh MN, Hightower AW et al (2009) A supervised land cover classification of a western Kenya lowland endemic for human malaria: associations of land cover with larval Anopheles habitats. Int J Health Geogr 8:19. doi:10.1186/1476-072X-8-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitatpattana N, Singhasivanon P, Kiyoshi H et al (2007) Potential association of dengue hemorrhagic fever incidence and remote senses land surface temperature, Thailand, 1998. Southeast Asian J Trop Med Public Health 38:427–433

    PubMed  Google Scholar 

  • Ogden NH, Maarouf A, Barker IK et al (2006) Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. Int J Parasitol 36:63–70

    Article  CAS  PubMed  Google Scholar 

  • Parmakelis A, Russello MA, Caccone A et al (2008) Short report: historical analysis of a near disaster: Anopheles gambiae in Brazil. Am J Trop Med Hyg 78:176–178

    Google Scholar 

  • Patitucci L, Mulieri P, Mariluis J et al (2010) The population ecology of Muscina stabulans (Fallén) (Diptera: Muscidae), along an urban-rural gradient of Buenos Aires, Argentina. Neotrop Entomol 39:441–446

    Google Scholar 

  • Patz JA, Martens WJM, Focks DA et al (1998) Dengue fever epidemic potential as projected by general circulation models of global climate change. Environ Health Perspect 106:147–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson AT, Shaw J (2003) Lutzomyia vectors for cutaneous leishmaniasis in southern Brazil: ecological niche models, predicted geographic distributions, and climate change effects. Int J Parasitol 33:919–931

    Article  PubMed  Google Scholar 

  • Peterson AT, Pereira RS, Camargo Neves VF (2004) Using epidemiological survey data to infer geographic distributions of leishmaniasis vector species. Rev Soc Bras Med Trop 37:10–14

    Article  PubMed  Google Scholar 

  • Phillips PL, Welch JB, Kramer M (2014) Development of a spatially targeted field sampling technique for the southern cattle tick, Rhipicephalus microplus, by mapping white-tailed deer, Odocoileus virginianus, habitat in South Texas. J Insect Sci 14:88. doi:10.1093/jis/14.1.88, Available online http://www.insectscience.org/14.88

    Article  PubMed  PubMed Central  Google Scholar 

  • Rakotomanana F, Randremanana RV, Rabarijaona LP et al (2007) Determining areas that require indoor insecticide spraying using Multi Criteria Evaluation, a decision-support tool for malaria vector control programmes in the Central Highlands of Madagascar. Int J Health Geogr 6:2. doi:10.1186/1476-072X-6-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Randolph SA (1998) Mighty theories from little acorns grow: is Lyme disease risk predictable from mast-seeding by oak trees? Trends Ecol Evol 13:301–303

    Article  CAS  PubMed  Google Scholar 

  • Reiskind MH, Zarrabi AA (2011) The importance of an invasive tree fruit as a resource for mosquito larvae. J Vector Ecol 36:197–203

    Article  PubMed  Google Scholar 

  • Reiter P, Lathrop S, Bunning M et al (2003) Texas lifestyle limits transmission of dengue virus. Emerg Infect Dis 9:86–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers DJ, Hay SI, Packer MJ (1996) Predicting the distribution of tsetse flies in West Africa using temporal Fourier processed meteorological satellite data. Ann Trop Med Parasitol 90:225–241

    Article  CAS  PubMed  Google Scholar 

  • Rogers DJ, Wilson AJ, Hay SI et al (2006) The global distribution of yellow fever and dengue. Adv Parasitol 62:181–220

    Google Scholar 

  • Ruiz MO, Walker ED, Foster ES et al (2007) Association of West Nile virus illness and urban landscapes in Chicago and Detroit. Int J Health Geogr 6:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Salomón OD, Quintana MG, Mastrángelo AV et al (2012) Leishmaniasis and climate change—case study: Argentina. J Trop Med 11. doi:10.1155/2012/601242

    Google Scholar 

  • Shaman J, Day JF, Stieglitz M (2002) Drought-induced amplification of Saint Louis encephalitis virus, Florida. Emerg Infect Dis 8:575–580

    Article  PubMed  PubMed Central  Google Scholar 

  • Silue KD, Raso G, Yapi A et al (2008) Spatially-explicit risk profiling of Plasmodium falciparum infections at a small scale: a geostatistical modelling approach. Malar J 7:111

    Article  PubMed  PubMed Central  Google Scholar 

  • Vazquez-Prokopec GM, Cecere MC et al (2005) Spatiotemporal patterns of reinfestation by Triatoma guasayana (Hemiptera: Reduviidae) in a rural community of northwestern Argentina. J Med Entomol 42:571–581

    Article  PubMed  PubMed Central  Google Scholar 

  • Vezzani D, Carbajo A (2006) Spatial and temporal transmission risk of Dirofilaria immitis in Argentina. Int J Parasitol 36:1463–1472

    Article  PubMed  Google Scholar 

  • Vezzani D, Carbajo A (2008) Aedes aegypti, Aedes albopictus, and dengue in Argentina: current knowledge and future directions. Mem Inst Oswaldo Cruz 103:66–74

    Article  PubMed  Google Scholar 

  • Vittor AY, Gilman RH, Tielsch J et al (2006) The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of Falciparum malaria in the Peruvian Amazon. Am J Trop Med Hyg 74:3–11

    PubMed  Google Scholar 

  • Williams CR, Mincham G, Ritchie SA et al (2014) Bionomic response of Aedes aegypti to two future climate change scenarios in far north Queensland, Australia: implications for dengue outbreaks. Parasit Vectors 7:447

    Article  PubMed  PubMed Central  Google Scholar 

  • Wimberly MC, Yabsley MJ, Baer A et al (2008) Spatial heterogeneity of climate and land-cover constraints on distributions of tick-borne pathogens. Glob Ecol Biogeogr 17:189–202

    Article  Google Scholar 

  • Ximenes MFFM, Castellon EG, De Souza MF et al (2006) Effect of abiotic factors on seasonal population dynamics of Lutzomyia longipalpis (Diptera: Psychodidae) in Northeastern Brazil. J Med Entomol 43:990–995

    Article  Google Scholar 

  • Zeilhofer P, Kummer OP, Santos ES et al (2008) Spatial modelling of Lutzomyia (Nyssomyia) whitmani s.l. (Antunes & Coutinho, 1939) (Diptera: Psychodidae: Phlebotominae) habitat suitability in the state of Mato Grosso, Brazil. Mem Inst Oswaldo Cruz 103:653–660

    Article  PubMed  Google Scholar 

  • Zhou G, Munga S, Minakawa N et al (2007) Spatial relationship between adult malaria vector abundance and environmental factors in Western Kenya Highlands. Am J Trop Med Hyg 77:29–35

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel M. Gleiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gleiser, R.M. (2017). Geoprocessing and Expected Distribution of Diseases (Including Deforestation, Global Warming, and Other Changes). In: Marcondes, C. (eds) Arthropod Borne Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-13884-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13884-8_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13883-1

  • Online ISBN: 978-3-319-13884-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics