Skip to main content

Polymer/Nanographite Composites for Mechanical Impact Sensing

  • Chapter
  • First Online:
Graphene-Based Polymer Nanocomposites in Electronics

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

The purpose of this chapter is to give a review of the polymer/nanographite composite (PNGC) materials specially developed for applications in mechanical strain and pressure sensors that can be used for design of flexible sensing systems. Our recent achievements in design, processing, and investigation of physical properties of elastomer and nanostructured carbon composites as prospective materials for mentioned sensors are also presented. In the beginning, theoretical principles of tunneling percolation theory and piezoresistivity have been described. We discuss the most suitable polymer matrices and electrically conductive nanographite fillers for sensitive PNGC. Preparation methods of mechanically sensitive PNGC have been considered. Different particularly produced and tested polymer/nanographite composites are overhauled and possible advantages and disadvantages of PNGC in different possible applications are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman W, Gupta H (2001) Kautchuk und Gummi Kunststoff. Doktor Gupta Verlag, Ratingen.

    Google Scholar 

  2. Donnet JB (2003) Nano and microcomposites of polymers elastomers and their reinforcement. Compos Sci Technol; 63:1085-1088.

    Google Scholar 

  3. Heo JS, Chung JH, Lee JJ (2006) Tactile sensor arrays using fiber Bragg grating sensors. Sensor Actuat A-Phys 126:312–327.

    Google Scholar 

  4. Fortes LM, Gonçalves MC, Almeida RM (2011) Flexible photonic crystals for strain sensing. Opt Mater 33:408-412.

    Google Scholar 

  5. Yan C, Ferraris E, Geernaert T, Berghmans F, Reynaerts D (2012) Characterisation of tactile sensors based on fibre Bragg gratings towards temperature independent pressure sensing. Procedia Engineering 47:1402-1405.

    Google Scholar 

  6. Lee B, Roh S, Park J (2009) Current status of micro- and nanostructured fiber sensors. Opt Fiber Technol 15:209-221.

    Google Scholar 

  7. Staufer D, Aharony A (1992) Introduction into percolation theory. Taylor & Francis, Washington.

    Google Scholar 

  8. Roldughin VI, Vysotskii VV (2000) Percolation properties of metal-filled polymer films, structure and mechanisms of conductivity. Prog Org Coat 39:81-100.

    Google Scholar 

  9. Balberg I, Azulay D, Toker D, Millo O (2004) Percolation and tunneling in composite materials. Int J Mod Phys B 18(15):2091-2121.

    Google Scholar 

  10. Knite M, Teteris V, Kiploka A, Kaupuzs J (2004) Polyisoprenecarbon black nanocomposites as strain and pressure sensor materials. Sensor Actuat A-Phys 110:142–149.

    Google Scholar 

  11. Rocha JG, Paleo AJ, Ferrie WJ, van Hattum WJ, Lanceros-Mendez S (2013) Polypropylene-carbon nanofiber composites as strain-gauge sensor. IEEE Sens J 13(7):2603-2609.

    Google Scholar 

  12. Laukhin V, Laukhina E, Lebedev V, Pfattner R, Rovira C, Veciana J (2011) Flexible all-organic highly tenzo-resistive bi layer films as weightless strain and pressure sensors for medical devices. In: Proceedings of the Second International Conference on Sensor device Technologies and Applications, SENSORDEVICES 2011, p 151.

    Google Scholar 

  13. Zhang XW, Pan Y, Zheng Q, Yi XS (2000) Time dependence of piezoresistance for the conductor filled polymer composites. J Polym Sci Pol Phys 38:2739-2749.

    Google Scholar 

  14. Stassi S, Cauda V, Canavese G, Pirri CF (2014) Flexible Tactile Sensing Based on Piezoresistive Composites: A Review. Sensors 14:5296-5332.

    Google Scholar 

  15. Chen L, Chen G, Lu L (2007) Piezoresistive Behavior Study on Finger Sensing Silicone Rubber/Graphite Nanosheet Nanocomposites. Adv Funct Mater 17:898-904.

    Google Scholar 

  16. Flandin L, Hiltner A, Baer E, (2001) Interrelationships between electrical and mechanical properties of a carbon black filled ethylene-octene elastomer. Polymer 42:827-8238.

    Google Scholar 

  17. Simmons JG (1963) Electric tunnel effect between dissimilar electrodes separated by thin insulating film. J Appl Phys 34(9):2581-2590.

    Google Scholar 

  18. Zavickis J, Knite M, Podins G, Linarts A, Orlovs R (2011) Polyisoprene – nanostructured carbon composite – a soft alternative for pressure sensor application. Sensor Actuat A-Phys 71:38-42.

    Google Scholar 

  19. Luheng W, Tianhuai D, Peng W (2009) Influence of carbon black concentration on piezoresistivity for carbon black filled silicone rubber composite. Carbon 47:3151-3157.

    Google Scholar 

  20. Al-solamya FR, Al-Ghamdib AA, Mahmoud WE (2012) Piezoresistive behavior of graphite nanoplatelets based rubber nanocomposites. Polym Advan Technol 23:478-482.

    Google Scholar 

  21. Zheng S, Deng J, Yang L, Ren D, Huang S, Yang W, Liu Z, Yang M (2014) Investigation on the piezoresistive behavior of high density polyethylene/carbon black films in the elastic and plastic regimes. Compos Sci Technol 97:34-40.

    Google Scholar 

  22. Knite M, Klemenok I, Shakale G, Teteris V, Zicans J (2007) Polyisoprene-carbon nano-composites for application in multifunctional sensors. J Alloy Compd 434–435:850-853.

    Google Scholar 

  23. Kanoun O, Müller C, Benchirouf A, Sanli A, Dinh TN, Al-Hamry A, Bu L, Gerlach C, Bouhamed A (2014) Flexible Carbon Nanotube Films for High Performance Strain Sensors. Sensors 14:10042-10071.

    Google Scholar 

  24. Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486-1498.

    Google Scholar 

  25. Zavickis J, Linarts A, Knite M (2011) The downshift of the electrical percolation threshold in polyisoprene nanostructured carbon composites. Energetika 8:44-49.

    Google Scholar 

  26. Knite M, Tupureina V, Fuith A, Zavickis J, Teteris V (2007) Polyisoprene – multi-wall carbon nanotube composites for sensing strain. Mat Sci Eng C-Biomim 27:1125-1128.

    Google Scholar 

  27. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nano 4(4):217-224.

    Google Scholar 

  28. Grehov V, Kalnacs J, Matzui L, Knite M, Murashov A, Vilken A (2013) Nitrogen Ad-sorption by Thermoexfoliated Graphite. Latvian Journal of Physics and Technical Sciences 1:58-65.

    Google Scholar 

  29. Chiacchiarelli LM, Rallini M, Monti M, Puglia D, Kenny JM, Torre L (2013) The role of irreversible and reversible phenomena in the piezore-sistive behavior of graphene epoxy nanocomposites applied to structural health monitoring. Compos Sci Technol 80:73-79.

    Google Scholar 

  30. Knite M, Zavickis J, Sakale G, Ozols K, Linarts A (2013) Advanced smart poly-mer/nanographite composites for environmental pollution control. Green Design, Materials and Manufacturing Processes - Proceedings of the 2nd International Conference on Sustainable Intelligent Manufacturing, SIM 2013 p 587-592.

    Google Scholar 

  31. Knite M, Teteris V, Kiploka A (2003) The effect of plasticizing agent on strain induced change of electric resistivity of carbon polyisoprene nanocomposites. Mater Sci Eng C 23(6–8):787-790.

    Google Scholar 

  32. Knite M, Hill AJ, Pas SJ, Teteris V, Zavickis J (2006) Effects of plasticizer and strain on the percolation threshold in polyisoprene carbon nanocomposites: positron an-nihilation lifetime spectroscopy and electric resistance measurements. Mater Sci Eng C 26:771-775.

    Google Scholar 

  33. Knite M, Zavickis J (2009) Prospective polymer composite materials for applications in flexible tactile sensors. In: Rodic AD (ed) Contemporary robotics – challenges and solutions, In-The, India, p 99-128.

    Google Scholar 

  34. Kumar SK, Ponnamma D, Thomas S, Grohens Y (2014) Evolution from graphite to graphene elastomer composites. Prog Polym Sci 39:749-780.

    Google Scholar 

  35. Garima M, Vivek D, Kyong YR, Soo-Jin P, Wi RL (2014) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem in press: http://dx.doi.org/10.1016/j.jiec.2014.03.022.

  36. Das TK, Prusty S (2013) Graphene-based polymer composites and their applications. Polym-Plast Technol 52:319-331.

    Google Scholar 

  37. Lu J, Chen X, Lu W, Chen G (2006) The piezoresistive behaviors of polyeth-ylene/foliated graphite nanocomposites. Eur Polym J 42:1015-1021.

    Google Scholar 

  38. Hou Y, Wang D, Zhang XM, Zhao H, Zha JW, Dang ZM (2013) Positive piezoresistive behavior of electrically conductive alkyl-functionalized graphene/ polydime-thylsiliconenanocomposites. J Mater Chem C 1:515-521.

    Google Scholar 

  39. Soltani R, Katbab AA (2010) The role of interfacial compatibilizer in controlling the electrical conductivity and piezoresistive behavior of the nanocomposites based on RTV silicone rubber/graphite nanosheets. Sensor Actuat A-Phys 163:213-219.

    Google Scholar 

  40. Tuukkanen S, Hoikkanen M, Poikelispaa M, Honkanen M, Vuorinen T, Kakkonen M, Vuorinen J, Lopo D (2014) Streching of solution processed carbon nanotube and graphene nanocomposite films on rubber substrates. Synt Met 191:28-35.

    Google Scholar 

  41. Kumar SK, Castro M, Saiter A, Delbreilh L, Feller JF, Thomas S, Grohens Y (2013) Development of poly(isobutylene-co-isoprene)/reduced graphene oxide nanocomposites for barrier, dielectric and sensing applications. Mater lett 96:109-112.

    Google Scholar 

  42. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved Synthesis of Graphene Oxide. ACS Nano 4(8):4806-4814.

    Google Scholar 

  43. Hodlur RM, Rabinal MK (2014) Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite. Compos Sci Technol 90:160-165.

    Google Scholar 

  44. Goncalves V, Brandao L, Mendes A (2014) Development of porous polymer pressure sensors incorporating graphene platelets. Polym Test 37:129-137.

    Google Scholar 

  45. Kim YJ, Cha JY, Ham H, Huh H, So DS, Kang I (2011) Prepartion of piezoresistive nano smart hybrid material based on graphene. Curr Appl Phys 11:350-352.

    Google Scholar 

  46. Eswaraiah V, Aravind SSJ, Balasubramaniam K, Ramaprabhu S (2013) Graphene functionalized carbon nanotubes for conducting polymer nanocomposites and their improved strain sensing properties. Macromol Chem Physic 214:2439-2444.

    Google Scholar 

  47. Vovchenko L, Lazarenko A, Matzui L, Zhuravkov A (2012) The effect of mechanical stress on electric resistance of nanographite-epoxy composites. Physica E 44:940-943.

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by ESF Grants Nr. 1DP/1.1.1.2.0/13/APIA/VIAA/030 and Nr. 1DP/1.1.1.2.0/13/APIA/VIAA/021

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maris Knite .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Knite, M., Linarts, A. (2015). Polymer/Nanographite Composites for Mechanical Impact Sensing. In: Sadasivuni, K., Ponnamma, D., Kim, J., Thomas, S. (eds) Graphene-Based Polymer Nanocomposites in Electronics. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13875-6_9

Download citation

Publish with us

Policies and ethics