Skip to main content

Graphene Filled Polymers in Photovoltaic

  • Chapter
  • First Online:
Graphene-Based Polymer Nanocomposites in Electronics

Abstract

Graphene—a two-dimensional lattice oriented monolayer of sp2-hybridized carbon atoms—has taken up considerable attention leading to a growing scientific interest due to its exceptionally high electrical conductivity (orders of magnitude higher than copper), optical transparency (>90 %), chemical robustness (more than 500 °C) and mechanical stiffness (more than 1,000 GPa) as well as high specific surface area . Design and development of graphene incorporated polymer photovoltaics is one of the promising routes to harness the extraordinary properties of graphene for the generation of efficient solar-to-power conversion devices. Graphene as well as its chemically functionalized forms, graphene oxide (GO) and reduced-GO, are the smart materials for photovoltaic cells performing specific functions depending upon their intriguing properties. Herein we review the multifunctional and practical applicability of graphene and its composite materials as the electron acceptor, counter electrode and hole transport components of polymer solar cells . We conclude the chapter with the present scenario and challenges related to the stability and commercialization of graphene–polymer based photovoltaic devices .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu Y, Murali S, Cai W, Xuesong Li, Suk J W, Potts J R, Ruoff R S (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Google Scholar 

  2. Geim A K, Novoselov K S (2007) The rise of graphene. Nat Mater 6:183–191

    Google Scholar 

  3. Compton O C, Nguyen S B T (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723

    Google Scholar 

  4. Stankovich S, Dikin D A, Dommett G H B (2006) Graphene-based composite materials. Nat 442:282–286

    Google Scholar 

  5. Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48:2127–2150

    Google Scholar 

  6. Katsnelson M I (2007) Graphene: carbon in two dimensions. Mater Today 10:20–27

    Google Scholar 

  7. Geim A K (2009) Graphene: status and prospects. Science 324:1530–1534

    Google Scholar 

  8. Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K (2007) Room-temperature quantum hall effect in graphene. Science 315:1379–1379

    Google Scholar 

  9. Stoller M D, Park S, Zhu Y, An J, Ruoff R S (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Google Scholar 

  10. Loh K P, Bao, Q L, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024

    Google Scholar 

  11. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274

    Google Scholar 

  12. Yu D S, Dai L (2010) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1:467–470

    Google Scholar 

  13. Wang X, Zhi L J, Mullen K (2008) Graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323–327

    Google Scholar 

  14. Eda G, Chhowalla M (2009) Graphene-based composite thin films for electronics. Nano Lett 9:814–818

    Google Scholar 

  15. Yu D S, Dai L (2010) Voltage-induced incandescent light emission from large-area graphene films. Appl Phys Lett 96:143107(1–3)

    Google Scholar 

  16. Yu D S, Yang Y, Durstock M, Baek J-B, Dai L (2010) Soluble P3HT-grafted graphene for efficient bilayer-heterojunction photovoltaic devices. ACS Nano 4:5633–5640

    Google Scholar 

  17. Gilje S, Song H, Wang M, Wang K L, Kaner R B (2007) A chemical route to graphene for device applications. Nano Lett 7:3394–3398

    Google Scholar 

  18. Liu Y, Yu D, Zeng C, Miao Z, Dai L (2010) Biocompatible graphene oxide-based glucose biosensors. Langmuir 29:6158–6160

    Google Scholar 

  19. Qu L, Liu Y, Baek J, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326

    Google Scholar 

  20. Dreyer D R, Park S, Bielawski C W, Ruoff R S (2009) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Google Scholar 

  21. Lightcap V, Kamat P V (2012) Fortification of CdSe quantum dots with graphene oxide. excited state interactions and light energy conversion. J Am Chem Soc 134:7109–7116

    Google Scholar 

  22. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nat 353:737–740

    Google Scholar 

  23. Imahori H, Umeyama T, Ito S (2009) Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Acc Chem Res 42:1809–1818

    Google Scholar 

  24. Ye L, Zhang S, Huo L, Zhang M, HouJ (2014) Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene. Acc Chem Res 47:1595–1603

    Google Scholar 

  25. Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3:297–302

    Google Scholar 

  26. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868

    Google Scholar 

  27. Ma W, Yang C, Gong X, Lee K, Heeger A J (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15:1617–1622

    Google Scholar 

  28. Peet J, Kim J Y, Coates N E, Ma W L, Moses D, Heeger A J, Bazan G C (2007) Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 6:497–500

    Google Scholar 

  29. Chen H-Y, Hou J, Zhang S (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photonics 3:649–653

    Google Scholar 

  30. Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photonics 6:153–161

    Google Scholar 

  31. He Z, Zhong C, Huang X, Wong W-Y, Wu H, Chen L, Su S, Cao Y (2011) Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv Mater 23:4636–4643

    Google Scholar 

  32. Small C E, Chen S, Subbiah J, Amb C M, Tsang S-W, Lai T-H, Reynolds J R, So F (2012) High-efficiency inverted dithienogermolethienopyrrolodione-based polymer solar cells. Nat Photonics 6:115–120

    Google Scholar 

  33. Chen H-Y, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y, Li G (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photonics 3:649–653

    Google Scholar 

  34. Liang Y, Xu Z, Xia J, Tsai S-T, Wu Y, Li G, Ray C, Yu L (2010) For the bright future–bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22:E135–E138.

    Google Scholar 

  35. You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C-C, Gao J, Li G, Yang Y (2013) A polymer tandem solar cell with 10.6% power conversion efficiency. Nat Commun 4:1446(1–10)

    Google Scholar 

  36. Clarke T M, Durrant J R, (2010) Charge photogeneration in organic solar cells. Chem Rev 110:6736–6767

    Google Scholar 

  37. Pan Z, Gu H, Wu M-T, Li Y, Chen Y (2012) Graphene-based functional materials for organic solar cells. Opt Mater Express 2:814–824

    Google Scholar 

  38. Ren L, Qiu J, Wang S (2013) Photovoltaic properties of graphene nanodisk-integrated polymer composites. Compos: Part B 55:548–557

    Google Scholar 

  39. Acik M, Chabal Y J (2011) Nature of graphene edges: a review. Jpn J Appl Phys 50:070101(1–16)

    Google Scholar 

  40. Li Y, Hu Y, Zhao Y, Shi G, Deng L, Hou Y, Qu L (2011) An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv Mater 23:776–780

    Google Scholar 

  41. Yan X, Cui X, Li B, Li L S (2010) Large, solution-processible graphene quantum dots as light absorbers for photovoltaics. Nano Lett 10:1869–1873

    Google Scholar 

  42. Gupta V, Chaudhary N, Srivastava R, Sharma G D, Bhardwaj R, Chand S (2011) Luminscent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc 133:9960–9963

    Google Scholar 

  43. Yong V, Tour J M (2010) Theoretical efficiency of nanostructured graphene-based photovoltaics. Small 6:313–318

    Google Scholar 

  44. Hill I G, Kahn A, Soos Z G, Pascal R A J (2000) Charge-separation energy in films of π-conjugated organic molecules. Chem Phys Lett 327:181–188

    Google Scholar 

  45. Alvarado S F, Seidler P F, Lidzey D G, Bradley D D C (1998) Direct determination of the exciton binding energy of conjugated polymers using a scanning tunneling microscope. Phys Rev Lett 81:1082–1085

    Google Scholar 

  46. Kersting R, Lemmer U, Deussen M, Bakker H J, Mahrt R F, Kurz H, Arkhipov V I, Bässler H, Göbel E O (1994) Ultrafast field-induced dissociation of excitons in conjugated polymers. Phys Rev Lett 73:1440–1443

    Google Scholar 

  47. Xue J, Rand B P, Uchida S, Forrest S R (2005) A hybrid planar–mixed molecular heterojunction photovoltaic cell. Adv Mater 17:66–71

    Google Scholar 

  48. Scully S R, McGehee M D (2006) Effects of optical interference and energy transfer on exciton diffusion length measurements in organic semiconductors. J Appl Phys 100:034907(1–5)

    Google Scholar 

  49. Markov D E, Hummelen J C, Blom P W M, Sieval A B (2005) Dynamics of exciton diffusion in poly(p-phenylene vinylene)/fullerene heterostructures. Phys Rev B 72:045216(1–5)

    Google Scholar 

  50. Peumans P, Yakimov A, Forrestb S R (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93:3693–3723

    Google Scholar 

  51. Hoppe H, Sariciftci N S (2004) Organic solar cells: an overview. J Mater Res 19:1924–1945

    Google Scholar 

  52. Dennler G, Scharber M C, Brabec C J (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21:1323–1338

    Google Scholar 

  53. Kniepert J, Lange I, Kaap N J v d, Koster L J A, Dieter Neher (2014) A conclusive view on charge generation, recombination, and extraction in as-prepared and annealed P3HT:PCBM blends: combined experimental and simulation work. Adv Energy Mater 4:1301401(1–10)

    Google Scholar 

  54. Wang T, Pearson A J, Lidzey D G, Jones R A L (2013) Evolution of structure, optoelectronic properties, and device performance of polythiophene:fullerene solar cells during thermal annealing. Adv Funct Mater 21:1383–1390

    Google Scholar 

  55. Oklobia O, Shafai T S (2013) A study of donor/acceptor interfaces in a blend of P3HT/PCBM solar cell: effects of annealing and PCBM loading on optical and electrical properties. Solid-State Electron 87:64–68

    Google Scholar 

  56. Kasry A, Ashry M E, Nistor R A, Bola A A, Tulevskia G S, Martynaa G J, Newns D M (2012) High performance metal microstructure for carbon-based transparent conducting electrodes. Thin Solid Films 520:4827–4830

    Google Scholar 

  57. Søndergaard R, Hösel M, Angmo D, Larsen-Olsen T T, Krebs F C (2012) Roll-to-roll fabrication of polymer solar cells. Mater Today 15:36–49

    Google Scholar 

  58. Carle J E, Helgesen M, Madsen M V, Bundgaarda E, Krebs F C (2014) Upscaling from single cells to modules – fabrication of vacuum- and ITO-free polymer solar cells on flexible substrates with long lifetime. J Mater Chem C 2:1290–1297

    Google Scholar 

  59. Lee S, Yeo J-S, Ji Y, Cho C, Kim D-Y, Na S-I, Lee B H, LeeT (2012) Flexible organic solar cells composed of P3HT:PCBM using chemically doped graphene electrodes. Nanotechnol 23:344013

    Google Scholar 

  60. Na S-I, Kim S-S, Jo J, Kim D-Y (2008) Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes. Adv Mater 20:4061–4067

    Google Scholar 

  61. Ohzeki M, Fujii S, Arai Y, Yanagidate T, Yanagi Y, Okukawa T, Yoshida A, Kataura H, Nishioka Y (2014) Performance improvement of flexible bulk heterojunction solar cells using PTB7:PC71BM by optimizing spin coating and drying processes. J Appl Phys, Part 1 53:02BE04(1–5)

    Google Scholar 

  62. Bässler H (1994) Non-dispersive and dispersive transport in random organic photoconductors. Mol Cryst Liq Cryst Sci A 252:11–21;

    Google Scholar 

  63. Huynh W U, Dittmer J J, Paul A (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427

    Google Scholar 

  64. Yin Z, Zhu J, He Q, Cao X, Tan C, Chen H, Yan Q, Zhang H (2014) Graphene-based materials for solar cell applications. Adv Energy Mater 4:1300574(1–19)

    Google Scholar 

  65. Liu Z, He D, Wang Y, Wu H, Wang J (2010) Graphene doping of P3HT:PCBM photovoltaic devices. Synth Met 160:1036–1039

    Google Scholar 

  66. Chen D, Zhang H, Liu Y, Li J (2013) Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy Environ Sci 6:1362–1387

    Google Scholar 

  67. Liu Q, Liu Z, Zhang X, Zhang N, Yang L, Yin S, Chen Y (2008) Organic photovoltaic cells based on an acceptor of soluble graphene. Appl Phys Lett 92:223303(1–3)

    Google Scholar 

  68. Liu Z, He D W, Wang Y, Wu H, Wang J (2010) Solution-processible functionalized graphene in donor/acceptor-type organic photovoltaic cells. Sol Energy Mater Sol Cells 94:1196–1200

    Google Scholar 

  69. Yu D, Park K, Durstock M, Dai L (2011) Fullerene-grafted graphene for efficient bulk heterojunction polymer photovoltaic devices. J Phys Chem Lett 2:1113–1118

    Google Scholar 

  70. Chauhan A K, Gusain A, Jha P, Koiry S P, Saxena V, Veerender P, Aswal D K, Gupta S K (2014) Graphene composite for improvement in the conversion efficiency of flexible poly 3-hexyl-thiophene:[6,6]-phenyl C71 butyric acid methyl ester polymer solar cells. Appl Phys Lett 104:133901(1–5)

    Google Scholar 

  71. Hill C M, Zhu Y, Pan S (2011) Fluorescence and electroluminescence quenching evidence of interfacial charge transfer in poly (3-hexylthiophene): graphene oxide bulk heterojunction photovoltaic devices. ACS Nano 5:942–951

    Google Scholar 

  72. Liu Q, Liu Z, Zhang X, Yang L, Zhang N, Pan G, Yin S, Chen Y, Wei J (2009) Polymer photovoltaic cells based on solution-processible graphene and P3HT. Adv Funct Mater 19:894–904

    Google Scholar 

  73. Jr W S H, Offeman R E (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Google Scholar 

  74. Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z, ChenY (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2:463–470

    Google Scholar 

  75. Stankovich S, Piner R D, Nguyen S B T, Ruoff R S (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44:3342–3347

    Google Scholar 

  76. Zhang B, Liu G, Chen Y, Zeng L-J, Zhu C-X, Neoh K-G, Wang C, Kang E-T (2011) Conjugated polymer-grafted reduced graphene oxide for nonvolatile rewritable memory. Chem Eur J 17:13646–13652

    Google Scholar 

  77. Li P-P, Chen Y, Zhu J, Feng M, Zhuang X, Lin Y, Zhan H (2011) Charm-bracelet-type poly(N-vinylcarbazole) functionalized with reduced graphene oxide for broadband optical limiting. Chem Eur J 17:780–785

    Google Scholar 

  78. Zhang B, Chen Y, Liu G, Xu L-Q, Chen J, Zhu C-X, Neoh K-G, Kang E-T (2012) “Push-pull archetype of reduced graphene oxide functionalized with polyfluorene for nonvolatile rewritable memory. J Polym Sci, Part A: Polym Chem 2:378–387

    Google Scholar 

  79. Li Y, Pan Z, Fu Y, Chen Y, Xie Z, Zhang B (2012) Soluble reduced graphene oxide functionalized with conjugated polymer for heterojunction solar cells. J Polym Sci, Part A: Polym Chem 50(9):1663–1671

    Google Scholar 

  80. Jayawardena K D G I, Rhodes R, Gandhi K K, Prabhath M R R, Dabera G D M R, Beliatis m J, Rozanski L J, Henley S J, Silva S R P (2013) Solution processed reduced graphene oxide/metal oxide hybrid electron transport layers for highly efficient polymer solar cells. J Mater Chem A 1: 9922–9927

    Google Scholar 

  81. Wu J, Becerril H A, Bao Z, Liu Z, Chen Y, Peumans P (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92:263302(1–3)

    Google Scholar 

  82. Yin Z, Sun S, Salim T, Wu S, Huang X, He Q, Lam Y M, Zhang H (2010) Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano 4:5263–5268

    Google Scholar 

  83. Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y-J, Kim K S, Özyilmaz B, Ahn J-H, Hong B H, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578

    Google Scholar 

  84. Arco L G D, Zhang Y, Schlenker C W, Ryu K, Thompson M E, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865–2873

    Google Scholar 

  85. Bonaccorso F, Sun Z, Hasan T, Ferrari A C (2010) Graphene photonics and optoelectronics. Nat Photonics 4: 611–622

    Google Scholar 

  86. Choi Y Y, Kang S J, Kim H- K, Choi W M, Na S-I (2012) Multilayer graphene films as transparent electrodes for organic photovoltaic devices. Sol Energy Mater Sol Cells 96:281–285

    Google Scholar 

  87. Choe M, Lee B H, Jo G, Park J, Park W, Lee S, Hong W-K, Seong M-J, Kahng Y H, Lee K, LeeT (2010) Efficient bulk-heterojunction photovoltaic cells with transparent multi-layer graphene electrodes. Org Electron 11:1864–1869

    Google Scholar 

  88. Park H S, Rowehl J A, Kim K K, Bulovic V, Kong J (2010) Doped graphene electrodes for organic solar cells. Nanotechnol 21:505204

    Google Scholar 

  89. Wang Y, Tong S W, Xu X F, Özyilmaz B, Loh K P (2011) Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Adv Mater 23:1514–1518

    Google Scholar 

  90. Lee Y- Y, Tu K- H, Yu C- C, Li S-S, Hwang J-Y, Lin C-C, Chen K-H, Chen L-C, Chen H-L, Chen C-W (2011) Top laminated graphene electrode in a semitransparent polymer solar cell by simultaneous thermal annealing/releasing method. ACS Nano 5:6564–6570

    Google Scholar 

  91. Hsu C- L, Lin C- T, Huang J- H, Chu C-W, Wei K-H, Li L-J (2012) Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells. ACS Nano 6:5031–5039

    Google Scholar 

  92. Tung V C, Chen L M, Allen M J, Wassei J K, Nelson K, Kaner R B, Yang Y (2009) Low-temperature solution processing of graphene–carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett 9:1949–1955

    Google Scholar 

  93. Ni G- X, Zheng Y, Bae S, Tan C Y, Kahya O, Wu J, Hong B H, Yao K, Özyilmaz B (2012) Graphene–ferroelectric hybrid structure for flexible transparent electrodes. ACS Nano 6:3935–3942

    Google Scholar 

  94. Emmanuel K, Kyriaki S, Minas M S, Fotakis C, Stratakis E (2013) Flexible organic photovoltaic cells with in situ nonthermal photoreduction of spin-coated graphene oxide electrodes. Adv Funct Mater 23:2742–2749

    Google Scholar 

  95. M. Jørgensen, K. Norrman, F. C. Krebs, Stability/degradation of polymer solar cells. Sol Energy Mater Sol Cells 92:686–714

    Google Scholar 

  96. Kim Y- H, Lee S- H, Noh J, han S-H (2006) Performance and stability of electroluminescent device with self-assembled layers of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) and polyelectrolytes. Thin Solid Films 510:305–310

    Google Scholar 

  97. Lagemaat J, Barnes T M, Rumbles G, Shaheen S E, Coutts T J, Weeks C, Levitsky I, Peltola J, Glatkowski P (2006) Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode. Appl Phys Lett 8:233503 (1–3)

    Google Scholar 

  98. Matyba P, Yamaguchi H, Chhowalla M, Robinson N D, Edman L (2010) Flexible and metal-free light-emitting electrochemical cells based on graphene and PEDOT:PSS as the electrode materials. ACS Nano 5:574–580

    Google Scholar 

  99. Dreyer D R, Park S, Bielawski C W, Ruoff R S (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Google Scholar 

  100. Loh K P, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024

    Google Scholar 

  101. Li S-S, Tu K-H, Lin C-C, Chen C-W, Chhowalla M (2010) Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4:3169–3174

    Google Scholar 

  102. Kim J, Tung V C, Huang J X (2011) Water processable graphene oxide:single walled carbon nanotube composite as anode modifier for polymer solar cells. Adv Energy Mater 1:1052–1057

    Google Scholar 

  103. Yun J M, Yeo J S, Kim J, Jeong H-G, Kim D-Y, Noh Y-J, Kim S-S, Ku B-C, Na S-I (2011) Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells. Adv Mater 23:4923–4928

    Google Scholar 

  104. Murray I P, Lou S J, Cote L J, Loser S, Kadleck C J, Xu T, Szarko J M, Rolczynski B S, Johns J E, Huang J, Yu L, Chen L X, Marks T J, HersamM C (2011) Graphene Oxide Interlayers for Robust, High-Efficiency Organic Photovoltaics. J Phys Chem Lett 2:3006–3012

    Google Scholar 

  105. Park H, Chang S, Jean J, Cheng J J, Araujo P T, Wang M, Bawendi M G, Dresselhaus M S, Bulović V, Kong J, Gradečak S (2013) Graphene cathode-based ZnO nanowire hybrid solar cells. Nano Lett 13: 233–239

    Google Scholar 

  106. Tong S W, Mishra N, Su C L, Nalla V, Wu W, Ji W, Zhang J, Chan Y, Loh K P (2014) High-performance hybrid solar cell made from CdSe/CdTe nanocrystals supported on reduced graphene oxide and PCDTBT. Adv Funct Mater 24:1904–1910

    Google Scholar 

  107. Liu J, Xue Y, Gao Y, Yu D, Durstock M, Dai L (2012) Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells. Adv Mater 24:2228–2233

    Google Scholar 

  108. Iwan A, Chuchmała A (2012) Perspectives of applied graphene: Polymer solar cells. Prog Polym Sci 37:1805–1828

    Google Scholar 

  109. Wan X, Huang Y, Chen Y (2012) Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale, Acc Chem Res 45(4):598-607

    Google Scholar 

  110. Barpuzary D, Qureshi M (2013) Enhanced photovoltaic performance of semiconductor-sensitized ZnO-CdS coupled with graphene oxide as a novel photoactive material. ACS Appl Mater Interfaces 5:11673–11682

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Qureshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barpuzary, D., Qureshi, M. (2015). Graphene Filled Polymers in Photovoltaic. In: Sadasivuni, K., Ponnamma, D., Kim, J., Thomas, S. (eds) Graphene-Based Polymer Nanocomposites in Electronics. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13875-6_7

Download citation

Publish with us

Policies and ethics