Graphene Nanocomposites in Optoelectronics

  • Yuye Zhang
  • Zhixin Zhou
  • Jianhai Wang
  • Songqin Liu
  • Yuanjian ZhangEmail author
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


As a kind of emerging two-dimensional (2D) materials, graphene has attracted worldwide attentions both in fundamental studies and practical applications across many fields such as physics, chemistry, materials and electronics. Here, we will survey the recent advances in optoelectronics properties of graphene and graphene nanocomposites, as well as their potential applications. Moreover, the chemistry, the preparation techniques, and the structure–property relationships of the graphene nanocomposites would be highlighted.


Graphene Chemical functionalization Optoelectronics Structure-property relationships 



This work was supported in part by the National Natural Science Foundation of China (21203023 and 91333110), NSF of Jiangsu province (BK2012317), and Fundamental Research Funds for the Central Universities, China for financial support.


  1. 1.
    Kroto H.W., Heath J.R., Obrien S.C., Curl R.F., Smalley R.E. (1985) C-60-buckminsterfullerene. Nature 318 (6042):162-163.Google Scholar
  2. 2.
    Iijima S. (1991) Helical Microtubules of Graphitic Carbon. Nature 354 (6348):56-58.Google Scholar
  3. 3.
    Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science 306 (5696):666-669.Google Scholar
  4. 4.
    Peierls R.E. (1935) Quelques Proprietes Typiques des Corpses Solides. Ann. Inst. H. Poincare 5:177-222.Google Scholar
  5. 5.
    Landau L.D. (1937) Zur Theorie der Phasenumwandlungen II. Phys. Z. Sowjetunion 11:26-35.Google Scholar
  6. 6.
    Venables J.A., Spiller G.D.T., Hanbucken M. (1984) Nucleation and Growth of Thin-films. Rep. Prog. Phys. 47 (4):399-459.Google Scholar
  7. 7.
    Bekyarova E., Itkis M.E., Ramesh P., Berger C., Sprinkle M., de Heer W.A., Haddon R.C. (2009) Chemical Modification of Epitaxial Graphene: Spontaneous Grafting of Aryl Groups. J. Am. Chem. Soc. 131 (4):1336-1337.Google Scholar
  8. 8.
    Balog R., Jorgensen B., Nilsson L., Andersen M., Rienks E., Bianchi M., Fanetti M., Laegsgaard E., Baraldi A., Lizzit S., Sljivancanin Z., Besenbacher F., Hammer B., Pedersen T.G., Hofmann P., Hornekaer L. (2010) Bandgap Opening in Graphene Induced by Patterned Hydrogen Adsorption. Nat. Mater. 9 (4):315-319.Google Scholar
  9. 9.
    Han M.Y., Oezyilmaz B., Zhang Y., Kim P. (2007) Energy Band-gap Engineering of Graphene Nanoribbons. Physical Review Letters 98 (20).Google Scholar
  10. 10.
    Rana K., Singh J., Ahn J.H. (2014) A graphene-based transparent electrode for use in flexible optoelectronic devices. J. Mater. Chem. C 2 (15):2646.Google Scholar
  11. 11.
    Bonaccorso F., Sun Z., Hasan T., Ferrari A.C. (2010) Graphene photonics and optoelectronics. Nat. Photonics 4 (9):611-622.Google Scholar
  12. 12.
    Cairns D.R., Witte R.P., Sparacin D.K., Sachsman S.M., Paine D.C., Crawford G.P., Newton R.R. (2000) Strain-dependent Electrical Resistance of Tin-doped Indium Oxide on Polymer Substrates. Appl. Phys. Lett. 76 (11):1425-1427.Google Scholar
  13. 13.
    Zhang M., Fang S.L., Zakhidov A.A., Lee S.B., Aliev A.E., Williams C.D., Atkinson K.R., Baughman R.H. (2005) Strong, Transparent, Multifunctional, Carbon Nanotube Sheets. Science 309 (5738):1215-1219.Google Scholar
  14. 14.
    Li J., Hu L., Wang L., Zhou Y., Gruner G., Marks T.J. (2006) Organic Light-emitting Diodes Having Carbon Nanotube Anodes. Nano Lett. 6 (11):2472-2477.Google Scholar
  15. 15.
    Tenent R.C., Barnes T.M., Bergeson J.D., Ferguson A.J., To B., Gedvilas L.M., Heben M.J., Blackburn J.L. (2009) Ultrasmooth, Large-Area, High-Uniformity, Conductive Transparent Single-Walled-Carbon-Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying. Adv. Mater. 21 (31):3210-3216.Google Scholar
  16. 16.
    Kuila T., Bose S., Mishra A.K., Khanra P., Kim N.H., Lee J.H. (2012) Chemical Functionalization of Graphene and Its Applications. Prog. Mater. Sci. 57 (7):1061-1105.Google Scholar
  17. 17.
    Sun Z., Yan Z., Yao J., Beitler E., Zhu Y., Tour J.M. (2010) Growth of Graphene from Solid Carbon Sources. Nature 468 (7323):549-552.Google Scholar
  18. 18.
    Hernandez Y., Nicolosi V., Lotya M., Blighe F.M., Sun Z., De S., McGovern I.T., Holland B., Byrne M., Gun’Ko Y.K., Boland J.J., Niraj P., Duesberg G., Krishnamurthy S., Goodhue R., Hutchison J., Scardaci V., Ferrari A.C., Coleman J.N. (2008) High-yield Production of Graphene by Liquid-phase Exfoliation of Graphite. Nat. Nanotech. 3 (9):563-568.Google Scholar
  19. 19.
    Liu W.W., Wang J.N. (2011) Direct Exfoliation of Graphene in Organic Solvents with Addition of NaOH. Chem. Commun. 47 (24):6888-6890.Google Scholar
  20. 20.
    Paton K.R., Varrla E., Backes C., Smith R.J., Khan U., O’Neill A., Boland C., Lotya M., Istrate O.M., King P., Higgins T., Barwich S., May P., Puczkarski P., Ahmed I., Moebius M., Pettersson H., Long E., Coelho J., O’Brien S.E., McGuire E.K., Sanchez B.M., Duesberg G.S., McEvoy N., Pennycook T.J. et al. (2014) Scalable Production of Large Quantities of Defect-free Few-layer Graphene by Shear Exfoliation in Liquids. Nat. Mater. 13 (6):624-630.Google Scholar
  21. 21.
    Blake P., Brimicombe P.D., Nair R.R., Booth T.J., Jiang D., Schedin F., Ponomarenko L.A., Morozov S.V., Gleeson H.F., Hill E.W., Geim A.K., Novoselov K.S. (2008) Graphene-based Liquid Crystal Device. Nano Lett. 8 (6):1704-1708.Google Scholar
  22. 22.
    Lotya M., Hernandez Y., King P.J., Smith R.J., Nicolosi V., Karlsson L.S., Blighe F.M., De S., Wang Z., McGovern I.T., Duesberg G.S., Coleman J.N. (2009) Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. J. Am. Chem. Soc. 131 (10):3611-3620.Google Scholar
  23. 23.
    Gao W., Alemany L.B., Ci L., Ajayan P.M. (2009) New Insights into the Structure and Reduction of Graphite Oxide. Nat. Chem. 1 (5):403-408.Google Scholar
  24. 24.
    Brodie B.C. (1860) Sur le Poids Atomique du Graphite. Ann. Chim. Phys. 59:466-472.Google Scholar
  25. 25.
    Staudenmaier L. (1898) Verfahren zur Darstellung der Graphitsäure. Ber. Dtsch. Chem. Ges. 31:1481-1487.Google Scholar
  26. 26.
    Hummers W.S., Offeman R.E. (1958) Preparation of Graphitic Oxide. J. Am. Chem. Soc. 80 (6):1339-1339.Google Scholar
  27. 27.
    Li D., Muller M.B., Gilje S., Kaner R.B., Wallace G.G. (2008) Processable Aqueous Dispersions of Graphene Nanosheets. Nat. Nanotech. 3 (2):101-105.Google Scholar
  28. 28.
    Wang X., Zhi L., Muellen K. (2008) Transparent, Conductive Graphene Electrodes for Dye-sensitized Solar Cells. Nano Lett. 8 (1):323-327.Google Scholar
  29. 29.
    Cote L.J., Kim F., Huang J. (2009) Langmuir-Blodgett Assembly of Graphite Oxide Single Layers. J. Am. Chem. Soc. 131 (3):1043-1049.Google Scholar
  30. 30.
    Wu J., Agrawal M., Becerril H.A., Bao Z., Liu Z., Chen Y., Peumans P. (2010) Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes. ACS Nano 4 (1):43-48.Google Scholar
  31. 31.
    Chang H., Wang G., Yang A., Tao X., Liu X., Shen Y., Zheng Z. (2010) A Transparent, Flexible, Low-Temperature, and Solution-Processible Graphene Composite Electrode. Adv. Funct. Mater. 20 (17):2893-2902.Google Scholar
  32. 32.
    Becerril H.A., Mao J., Liu Z., Stoltenberg R.M., Bao Z., Chen Y. (2008) Evaluation of Solution-processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano 2 (3):463-470.Google Scholar
  33. 33.
    Xu Y., Bai H., Lu G., Li C., Shi G. (2008) Flexible Graphene Films via the Filtration of Water-soluble Noncovalent Functionalized Graphene Sheets. J. Am. Chem. Soc. 130 (18):5856-5857.Google Scholar
  34. 34.
    Reina A., Jia X., Ho J., Nezich D., Son H., Bulovic V., Dresselhaus M.S., Kong J. (2009) Large Area, Few-layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 9 (1):30-35.Google Scholar
  35. 35.
    Li X., Cai W., An J., Kim S., Nah J., Yang D., Piner R., Velamakanni A., Jung I., Tutuc E., Banerjee S.K., Colombo L., Ruoff R.S. (2009) Large-area Synthesis of High-quality and Uniform Graphene Films on Copper Foils. Science 324 (5932):1312-1314.Google Scholar
  36. 36.
    Zhang Y., Zhang L., Zhou C. (2013) Review of Chemical Vapor Deposition of Graphene and Related Applications. Accounts. Chem. Res. 46 (10):2329-2339.Google Scholar
  37. 37.
    Kim K.S., Zhao Y., Jang H., Lee S.Y., Kim J.M., Kim K.S., Ahn J.H., Kim P., Choi J.Y., Hong B.H. (2009) Large-scale Pattern Growth of Graphene Flms for Stretchable Transparent Electrodes. Nature 457 (7230):706-710.Google Scholar
  38. 38.
    Li X., Zhu Y., Cai W., Borysiak M., Han B., Chen D., Piner R.D., Colombo L., Ruoff R.S. (2009) Transfer of Large-area Graphene Films for High-performance Transparent Conductive Electrodes. Nano Lett. 9 (12):4359-4363.Google Scholar
  39. 39.
    Bae S., Kim H., Lee Y., Xu X., Park J.S., Zheng Y., Balakrishnan J., Lei T., Kim H.R., Song Y.I., Kim Y.J., Kim K.S., Ozyilmaz B., Ahn J.H., Hong B.H., Iijima S. (2010) Roll-to-roll Production of 30-inch Graphene Films for Transparent Electrodes. Nat. Nanotech. 5 (8):574-578.Google Scholar
  40. 40.
    Watcharotone S., Dikin D.A., Stankovich S., Piner R., Jung I., Dommett G.H.B., Evmenenko G., Wu S.E., Chen S.F., Liu C.P., Nguyen S.T., Ruoff R.S. (2007) Graphene-silica Composite Thin Films as Transparent Conductors. Nano Lett. 7 (7):1888-1892.Google Scholar
  41. 41.
    Tung V.C., Chen L.-M., Allen M.J., Wassei J.K., Nelson K., Kaner R.B., Yang Y. (2009) Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors. Nano Lett. 9 (5):1949-1955.Google Scholar
  42. 42.
    Khrapach I., Withers F., Bointon T.H., Polyushkin D.K., Barnes W.L., Russo S., Craciun M.F. (2012) Novel Highly Conductive and Transparent Graphene-based Conductors. Adv. Mater. 24 (21):2844-2849.Google Scholar
  43. 43.
    Yin Z., Wu S., Zhou X., Huang X., Zhang Q., Boey F., Zhang H. (2010) Electrochemical Deposition of ZnO Nanorods on Transparent Reduced Graphene Oxide Electrodes for Hybrid Solar Cells. Small 6 (2):307-312.Google Scholar
  44. 44.
    Chen Z., Ren W., Gao L., Liu B., Pei S., Cheng H. (2011) Three-dimensional Flexible and Conductive Interconnected Graphene Networks Grown by Chemical Vapour Deposition. Nat. Mater. 10 (6):424-428.Google Scholar
  45. 45.
    Yan Z., Peng Z., Casillas G., Lin J., Xiang C., Zhou H., Yang Y., Ruan G., Raji A.R.O., Samuel E.L.G., Hauge R.H., Yacaman M.J., Tour J.M. (2014) Rebar Graphene. ACS Nano 8 (5):5061-5068.Google Scholar
  46. 46.
    Słoma M., Wróblewski G., Janczak D., Jakubowska M. (2014) Transparent Electrodes with Nanotubes and Graphene for Printed Optoelectronic Applications. J. Nanomater. 2014:1-7.Google Scholar
  47. 47.
    Lee B.H., Lee J.H., Kahng Y.H., Kim N., Kim Y.J., Lee J., Lee T., Lee K. (2014) Graphene-Conducting Polymer Hybrid Transparent Electrodes for Efficient Organic Optoelectronic Devices. Adv. Funct. Mater. 24 (13):1847-1856.Google Scholar
  48. 48.
    Xu X.Y., Ray R., Gu Y.L., Ploehn H.J., Gearheart L., Raker K., Scrivens W.A. (2004) Electrophoretic Analysis and Purification of Fluorescent Single-walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 126 (40):12736-12737.Google Scholar
  49. 49.
    Li H., He X., Kang Z., Huang H., Liu Y., Liu J., Lian S., Tsang C.H., Yang X., Lee S.T. (2010) Water-soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angew. Chem. Int. Ed. 49 (26):4430-4434.Google Scholar
  50. 50.
    Sun Y.P., Zhou B., Lin Y., Wang W., Fernando K.A.S., Pathak P., Meziani M.J., Harruff B.A., Wang X., Wang H.F., Luo P.J.G., Yang H., Kose M.E., Chen B.L., Veca L.M., Xie S.Y. (2006) Quantum-sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc. 128 (24):7756-7757.Google Scholar
  51. 51.
    Eda G., Chhowalla M. (2009) Graphene-based Composite Thin Films for Electronics. Nano Lett. 9 (2):814-818.Google Scholar
  52. 52.
    Sun X., Liu Z., Welsher K., Robinson J.T., Goodwin A., Zaric S., Dai H. (2008) Nano-Graphene Oxide for Cellular Imaging and Drug Delivery. Nano Res. 1 (3):203-212.Google Scholar
  53. 53.
    Chien C.T., Li S.S., Lai W.J., Yeh Y.C., Chen H.A., Chen I.S., Chen L.C., Chen K.H., Nemoto T., Isoda S., Chen M., Fujita T., Eda G., Yamaguchi H., Chhowalla M., Chen C.W. (2012) Tunable Photoluminescence from Graphene Oxide. Angew. Chem. Int. Ed. 51 (27):6662-6666.Google Scholar
  54. 54.
    Luo Z., Vora P.M., Mele E.J., Johnson A.T.C., Kikkawa J.M. (2009) Photoluminescence and Band Gap Modulation in Graphene Oxide. Appl. Phys. Lett. 94 (11):111909.Google Scholar
  55. 55.
    Eda G., Lin Y.Y., Mattevi C., Yamaguchi H., Chen H.A., Chen I.S., Chen C.W., Chhowalla M. (2010) Blue Photoluminescence from Chemically Derived Graphene Oxide. Adv. Mater. 22 (4):505-509.Google Scholar
  56. 56.
    Pan D., Zhang J., Li Z., Wu M. (2010) Hydrothermal Route for Cutting Graphene Sheets into Blue-luminescent Graphene Quantum Dots. Adv. Mater. 22 (6):734-738.Google Scholar
  57. 57.
    Ponomarenko L.A., Schedin F., Katsnelson M.I., Yang R., Hill E.W., Novoselov K.S., Geim A.K. (2008) Chaotic Dirac Billiard in Graphene Quantum Dots. Science 320 (5874):356-358.Google Scholar
  58. 58.
    Lu J., Yang J., Wang J., Lim A., Wang S., Loh K.P. (2009) One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. Acs Nano 3 (8):2367-2375.Google Scholar
  59. 59.
    Li Y., Hu Y., Zhao Y., Shi G., Deng L., Hou Y., Qu L. (2011) An Electrochemical Avenue to Green-luminescent Graphene Quantum Dots as Potential Electron-acceptors for Photovoltaics. Adv. Mater. 23 (6):776-780.Google Scholar
  60. 60.
    Zhou X., Zhang Y., Wang C., Wu X., Yang Y., Zheng B., Wu H., Guo S., Zhang J. (2012) Photo-Fenton Reaction of Graphene Oxide: A New Strategy to Prepare Graphene Quantum Dots for DNA Cleavage. ACS Nano 6 (8):6592-6599.Google Scholar
  61. 61.
    Ye R., Xiang C., Lin J., Peng Z., Huang K., Yan Z., Cook N.P., Samuel E.L., Hwang C.C., Ruan G., Ceriotti G., Raji A.R., Marti A.A., Tour J.M. (2013) Coal as an Abundant Source of Graphene Quantum Dots. Nat. Commun. 4:2943.Google Scholar
  62. 62.
    Yan X., Cui X., Li L.S. (2010) Synthesis of Large, Stable Colloidal Graphene Quantum Dots with Tunable Size. J. Am. Chem. Soc. 132 (17):5944-5945.Google Scholar
  63. 63.
    Liu R., Wu D., Feng X., Muellen K. (2011) Bottom-Up Fabrication of Photoluminescent Graphene Quantum Dots with Uniform Morphology. J. Am. Chem. Soc. 133 (39):15221-15223.Google Scholar
  64. 64.
    Tang L., Ji R., Cao X., Lin J., Jiang H., Li X., Teng K.S., Luk C.M., Zeng S., Hao J., Lau S.P. (2012) Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots. ACS Nano 6 (6):5102-5110.Google Scholar
  65. 65.
    Zhu S., Zhang J., Tang S., Qiao C., Wang L., Wang H., Liu X., Li B., Li Y., Yu W., Wang X., Sun H., Yang B. (2012) Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Up-Conversion Bioimaging Applications. Adv. Funct. Mater. 22 (22):4732-4740.Google Scholar
  66. 66.
    Jin S.H., Kim D.H., Jun G.H., Hong S.H., Jeon S. (2013) Tuning the Photoluminescence of Graphene Quantum Dots through the Charge Transfer Effect of Functional Groups. ACS Nano 7 (2):1239-1245.Google Scholar
  67. 67.
    Kim S., Hwang S.W., Kim M.K., Shin D.Y., Shin D.H., Kim C.O., Yang S.B., Park J.H., Hwang E., Choi S.H., Ko G., Sim S., Sone C., Choi H.J., Bae S., Hong B.H. (2012) Anomalous Behaviors of Visible Luminescence from Graphene Quantum Dots: Interplay between Size and Shape. ACS Nano 6 (9):8203-8208.Google Scholar
  68. 68.
    Treossi E., Melucci M., Liscio A., Gazzano M., Samori P., Palermo V. (2009) High-Contrast Visualization of Graphene Oxide on Dye-Sensitized Glass, Quartz, and Silicon by Fluorescence Quenching. J. Am. Chem. Soc. 131 (43):15576-15577.Google Scholar
  69. 69.
    Kim J., Cote L.J., Kim F., Huang J. (2010) Visualizing Graphene Based Sheets by Fluorescence Quenching Microscopy. J. Am. Chem. Soc. 132 (1):260-267.Google Scholar
  70. 70.
    Dong H., Gao W., Yan F., Ji H., Ju H. (2010) Fluorescence Resonance Energy Transfer between Quantum Dots and Graphene Oxide for Sensing Biomolecules. Anal. Chem. 82 (13):5511-5517.Google Scholar
  71. 71.
    Chang H., Tang L., Wang Y., Jiang J., Li J. (2010) Graphene Fluorescence Resonance Energy Transfer Aptasensor for the Thrombin Detection. Anal. Chem. 82 (6):2341-2346.Google Scholar
  72. 72.
    He S., Song B., Li D., Zhu C., Qi W., Wen Y., Wang L., Song S., Fang H., Fan C. (2010) A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis. Adv. Funct. Mater. 20 (3):453-459.Google Scholar
  73. 73.
    Bell N.J., Ng Y.H., Du A., Coster H., Smith S.C., Amal R. (2011) Understanding the Enhancement in Photoelectrochemical Properties of Photocatalytically Prepared TiO2-Reduced Graphene Oxide Composite. J. Phys. Chem. C 115 (13):6004-6009.Google Scholar
  74. 74.
    Kim H., Moon G., Monllor Satoca D., Park Y., Choi W. (2012) Solar Photoconversion Using Graphene/TiO2 Composites: Nanographene Shell on TiO2 Core versus TiO2 Nanoparticles on Graphene Sheet. J. Phys. Chem. C 116 (1):1535-1543.Google Scholar
  75. 75.
    Cheng X., Liu H., Chen Q., Li J., Wang P. (2014) Preparation of Graphene Film Decorated TiO2 Nano-tube Array Photoelectrode and Its Enhanced Visible Light Photocatalytic Mechanism. Carbon 66:450-458.Google Scholar
  76. 76.
    Zhang Y., Mori T., Ye J. (2012) Polymeric Carbon Nitrides: Semiconducting Properties and Emerging Applications in Photocatalysis and Photoelectrochemical Energy Conversion. Sci. Adv. Mater. 4 (2):282-291.Google Scholar
  77. 77.
    Deifallah M., McMillan P.F., Cora F. (2008) Electronic and Structural Properties of Two-dimensional Carbon Nitride Graphenes. J. Phys. Chem. C 112 (14):5447-5453.Google Scholar
  78. 78.
    Zhang Y., Antonietti M. (2010) Photocurrent Generation by Polymeric Carbon Nitride Solids: An Initial Step towards a Novel Photovoltaic System. Chem.-Asian J. 5 (6):1307-1311.Google Scholar
  79. 79.
    Wang X., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J.M., Domen K., Antonietti M. (2009) A Metal-free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light. Nat. Mater. 8 (1):76-80.Google Scholar
  80. 80.
    Yan S.C., Li Z.S., Zou Z.G. (2009) Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine. Langmuir 25 (17):10397-10401.Google Scholar
  81. 81.
    Zhang Y., Mori T., Niu L., Ye J. (2011) Non-covalent Doping of Graphitic Carbon Nitride Polymer with Graphene: Controlled Electronic Structure and Enhanced Optoelectronic Conversion. Energy Environ. Sci. 4 (11):4517-4521.Google Scholar
  82. 82.
    Hou Y., Wen Z., Cui S., Guo X., Chen J. (2013) Constructing 2D Porous Graphitic C3N4 Nanosheets/nitrogen-doped Graphene/layered MoS2 Ternary Nanojunction with Enhanced Photoelectrochemical Activity. Adv. Mater. 25 (43):6291-6297.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yuye Zhang
    • 1
  • Zhixin Zhou
    • 1
  • Jianhai Wang
    • 1
  • Songqin Liu
    • 1
  • Yuanjian Zhang
    • 1
    Email author
  1. 1.School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingChina

Personalised recommendations